Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5691

Published

2025-09-15

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Marwa Sabbar Falih*, Mohammed Jasim M. Hassan, Ruba Fahmi Abbas, Dhifaf A. Abdulabbas, Zamen Ahmed Hussein

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Marwa Sabbar Falih, Mohammed Jasim M. Hassan, Ruba Fahmi Abbas, Dhifaf A. Abdulabbas, & Zamen Ahmed Hussein. (2025). Flow injection spectrophotometry: A new approach for dapsone analysis in pharmaceutical products by coupling reaction with salbutamol sulfate. Applied Chemical Engineering, 8(3), ACE-5691. https://doi.org/10.59429/ace.v8i3.5691
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Flow injection spectrophotometry: A new approach for dapsone analysis in pharmaceutical products by coupling reaction with salbutamol sulfate

Marwa Sabbar Falih

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 1001, Iraq

Mohammed Jasim M. Hassan

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 1001, Iraq

Ruba Fahmi Abbas

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 1001, Iraq

Dhifaf A. Abdulabbas

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 1001, Iraq

Zamen Ahmed Hussein

Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 1001, Iraq


DOI: https://doi.org/10.59429/ace.v8i3.5691


Keywords: dapsone (DAP); salbutamol sulphate (SAL); diazotization reaction; flow injection (FIA)


Abstract

This research developed and evaluated both batch and flow injection (FIA) spectrophotometric methods for the determination of dapsone (DAP) in pure substances and Pharmaceutical dosage forms. The proposed techniques were based on a reacting of salbutamol sulphate (SAL) with diazotized dapsone in an alkaline medium. This reaction, which occurs   at 5 °C, forms a yellow dye with a maximum absorbance at 462 nm. The chemical and physical parameters of both the batch and flow injection (FIA) methods were optimized at 5 °C to maximize sensitivity and repeatability. Under these optimal conditions, Beer's law showed linearity across dapsone (DAP) concentration ranges of 3–50 μg/mL and 1–150 μg/mL. The corresponding correlation coefficients were 0.999 and 0.997, and detection limits were 0.23 μg/mL and 0.05 μg/mL for batch and flow injection FIA methods, respectively. Flow injection method (FIA) provides an economical, rapid, simple, accurate, and high-throughput approach, It is characterized by reduced consumption of samples and reagents, which minimizes waste generation. The diazotization coupling reaction with salbutamol sulfate (SAL) was selected as a safe and effective reagent for this process.  This study aimed to develop a rapid and straightforward spectrophotometric method for the efficient quantitative determination of dapsone (DAP) in pharmaceutical formulations.


References

[1]. Kannan, G., Vasantha, J., Rani, N. V., Thennarasu, P., Kousalya, K., Anuradha, P., & Reddy, C. U. (2009). Drug usage evaluation of dapsone. Indian journal of pharmaceutical sciences, 71(4), 456.‏

[2]. Lovell, K. K., Momin, R. I., Sangha, H. S., Feldman, S. R., &Pichardo, R. O. (2024). Dapsone Use in Dermatology. American Journal of Clinical Dermatology, 1-12.‏

[3]. Wozel, G., &Blasum, C. (2014). Dapsone in dermatology and beyond. Archives of dermatological research, 306(2), 103-124.‏

[4]. JEFFES III, E. W. B., & Ahmed, A. R. (1989). Adjuvant therapy of bullous pemphigoid with dapsone. Clinical and experimental dermatology, 14(2), 132-136.‏

[5]. Leonard, J. N., & Fry, L. (1991). Treatment and management of dermatitis herpetiformis. Clinics in dermatology, 9(3), 403-408.‏

[6]. Sheu, J. S., Divito, S. J., Enamandram, M., &Merola, J. F. (2016). Dapsone therapy for pustular psoriasis: case series and review of the literature. Dermatology, 232(1), 97-101.‏

[7]. Guragain, S., Upadhayay, N., &Bhattarai, B. M. (2017). Adverse reactions in leprosy patients who underwent dapsone multidrug therapy: a retrospective study. Clinical pharmacology: advances and applications, 73-78.‏

[8]. Kaklamanos, G., &Theodoridis, G. (2012). Determination of dapsone in muscle tissue and milk using high performance liquid chromatography tandem mass spectrometry. Journal of agricultural and food chemistry, 60(1), 29-35.‏

[9]. Colomé, L. M., Freitas, G. M., de Medeiros Bastiani, J., Pereira, T. C. B., Bajerski, L., Bender, E. A., & Haas, S. E. (2017). Validation of analytical method by HPLC for determination of dapsone in polymeric nanocapsules based on crude rice brain oil. Journal of Applied Pharmaceutical Science, 7(7), 230-233.‏

[10]. Salama, N. N. E. D. A., El Ries, M. A., Toubar, S., Hamide, M. A., &Walash, M. I. (2012). Validated TLC and HPLC stability indicating methods for the quantitative determination of dapsone. Journal of Planar Chromatography Modern TLC, 25, 65-71.‏

[11]. Lu, F., Yang, J., Sun, M., Fan, L., Qiu, H., Li, X., &Luo, C. (2012). Flow injection chemiluminescence sensor using core-shell molecularly imprinted polymers as recognition element for determination of dapsone. Analytical and bioanalytical chemistry, 404, 79-88.‏

[12]. Wang, H. Y., Xu, L. X., Xiao, Y., & Han, J. (2004). Spectrophotometric determination of dapsone in pharmaceutical products using sodium 1, 2-naphthoquinone-4-sulfonic as the chromogenic reagent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(12), 2933-2939.‏

[13]. Ahmad, W. S., & Abdulaziz, M. S. (2021). Spectrophotometric determination of dapsone in pharmaceutical formulation by Schiff҆ base with p-dimethylaminobenzaldehyde. International Journal of Drug Delivery Technology, 11(1), 141-146.‏

[14]. Altahir, B. M., Mahdi, A. S., Al-hraishawi, T. J., & Taylor, K. E. (2021). Mutual Derivatization in the Determination of Dapsone and Thymol Using Cloud Point Extraction Followed by Spectrophotometric Detection. Analytical and Bio analytical Chemistry Research, 8(2), 177-186.‏

[15]. Abbas, G., Mashkoor, M., &Taha, D. N. (2016). New Flow Injection Designed Unit for the Determination of Dapsone in some Pharmaceutical Products. International Journal Of Chemtech Research, 9(11), 391-400.‏

[16]. Al-Enizzi, M. S., SHEEJ AHMAD, O. A., & Al-Sabha, T. A. N. (2020). Spectrophotometric Determination of Dapsone Using Charge Transfer Complex Formation Reaction. Egyptian Journal of Chemistry, 63(8), 3167-3177.‏

[17]. Essousi, H., Barhoumi, H., &Jaffrezic‐Renault, N. (2019). Molecularly Imprinted Electrochemical Sensor Based on Modified Reduced Graphene Oxide‐gold Nanoparticles‐polyanilineNanocomposites Matrix for Dapsone Determination. Electroanalysis, 31(6), 1050-1060.‏

[18]. Jabar, F. M., Al-Sabha, T. A. N., & Ismael, S. O. (2022). Spectrophotometric Determination of Salbutamol and Terbutaline using 9-Chloroacridine Reagent. Egyptian Journal of Chemistry, 65(2), 61-70.‏

[19]. Joshi, P. R., Parmar, S. J., & Patel, B. A. (2013). Spectrophotometric simultaneous determination of salbutamol sulfate and ketotifenfumarate in combined tablet dosage form by first‐order derivative spectroscopy method. International Journal of Spectroscopy, 2013(1), 589218.‏

[20]. Heuberger, J. A., van Dijkman, S. C., & Cohen, A. F. (2018). Futility of current urine salbutamol doping control. British journal of clinical pharmacology, 84(8), 1830-1838.‏

[21]. Stanley, A. Y., Durham, C. O., Sterrett, J. J., & Wallace, J. B. (2019). Safety of over-the-counter medications in pregnancy. The American Journal of Maternal Child Nursing, 44(4), 196-205.‏

[22]. Samiec, P., Švorc, Ľ., Stanković, D. M., Vojs, M., Marton, M., & Navrátilová, Z. (2017). Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes. Sensors and Actuators B: Chemical, 245, 963-971.‏

[23]. Pandya, H. N., Berawala, H. H., Khatri, D. M., & Mehta, P. J. (2010). Spectrofluorimetric estimation of salbutamol sulphate in different dosage forms by formation of inclusion complex with β-cyclodextrin. Pharmaceutical methods, 1(1), 49-53.‏

[24]. Dol, I., &Knochen, M. (2004). Flow-injection spectrophotometric determination of salbutamol with 4-aminoantipyrine. Talanta, 64(5), 1233-1236.‏

[25]. Al-Uzri, W. A., Jamal, M., &Hadi, H. (2023). Colorimetric determination of salbutamol sulfate using spectrophotometry-continuous flow injection technique in pure and pharmaceutical forms. Iraqi Journal of Pharmaceutical Sciences (p-ISSN 1683-3597 E-ISSN 2521-3512), 32(1), 45-52.‏

[26]. Attaran, A. M., Javanbakht, M., Fathollahi, F., &Enhessari, M. (2012). Determination of salbutamol in pharmaceutical and serum samples by adsorptive stripping voltammetry on a carbon paste electrode modified by iron titanatenanopowders. Electroanalysis, 24(10), 2013-2020.

[27]. Yilmaz, N., Özkan, S. A., Uslu, B., Şentürk, Z., &Biryol, I. (1998). Determination of terbutaline based on oxidation by voltammetry. Journal of pharmaceutical and biomedical analysis, 17(2), 349-355.‏

[28]. Abdoon, F. M., &Yahyaa, S. Y. (2020). Validated spectrophotometric approach for determination of salbutamol sulfate in pure and pharmaceutical dosage forms using oxidative coupling reaction. Journal of King Saud University-Science, 32(1), 709-715.‏

[29]. Mikuš, P., Valášková, I., &Havránek, E. (2005). Determination of salbutamol in pharmaceuticals by capillary electrophoresis. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 338(10), 498-501.‏

[30]. Abo El Abass Mohamed, S., & El‐Awady, M. I. (2019). Spectrofluorimetric investigation with green analytical procedures for estimation of bambuterol and terbutaline: Application to pharmaceutical dosage forms and content uniformity testing. Luminescence, 34(1), 70-76.‏

[31]. Faiyazuddin, M., Rauf, A., Ahmad, N., Ahmad, S., Iqbal, Z., Talegaonkar, S., & Ahmad, F. J. (2011). A validated HPTLC method for determination of terbutaline sulfate in biological samples: Application to pharmacokinetic study. Saudi Pharmaceutical Journal, 19(3), 185-191.‏

[32]. Kim, K. H., Kim, H. J., Kim, J. H., & Shin, S. D. (2001). Determination of terbutaline enantiomers in human urine by coupled achiral–chiral high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 751(1), 69-77.‏

[33]. Li, S., Wang, J., & Zhao, S. (2009). Determination of terbutaline sulfate by capillary electrophoresis with chemiluminescence detection. Journal of Chromatography B, 877(3), 155-158.‏

[34]. Abdullah, H. H. (2017). Cloud-point extraction and spectrophotometric determination of clonazepam in pharmaceutical dosage forms. Bulletin of the Chemical Society of Ethiopia, 31(3), 373-382.‏

[35]. P. Phansi, K. Danchana, S.L. Ferreira, V. Cerdà, Multisyringe flow injection analysis (MSFIA) for the automatic determination of total iron in wines, Food Chemistry. 277 (2019) 261–266.

[36]. P. Li, D. Yuan, Y. Huang, K. Lin, Improving the measurement of total dissolved sulfide in natural waters: a new on-site flow injection analysis method, Science of the Total Environment. 829 (2022) 154594.

[37]. H.S. Al-warda, M.R. Ahmed, M.Q. Al-Abachi, Thermodynamic study and spectrophotometric determination of cefiximetrihydrate in pure form and pharmaceutical tablets using batch and normal flow injection analysis, Eurasian Chemical Communications. 3 (7) (2021) 495–507.

[38]. Costa, B. E., Rezende, H. P., Tavares, L. Q., Coelho, L. M., Coelho, N. M., Sousa, P. A., & Néri, T. S. (2017). Application of flow-injection spectrophotometry to pharmaceutical and biomedical analyses. Spectroscopic Analyses: Developments and Applications, 193-212.‏

[39]. A.A. Kulkarni, I.S &Vaidya, Flow injection analysis: an overview, Journal of Critical Reviews. 2 (4) (2015) 19–24.

[40]. M. Trojanowicz, M &Pyszynska, Flow-injection methods in water analysis—recent developments, Molecules, 27 (4) (2022) 1410

[41]. Hassan, M. J. M., & Al-Rubaiawi, M. S. F. (2017). Cloud point extraction spectrophotometric method for determination of three types of cephalosporin via diazotization reactions with different reagents. Brazilian Journal of Analytical Chemistry, 4(17), 24-36.‏

[42]. Sabbar Falih, M., Abbas, R. F., Mahdi, N. I., Abood, N. K., & Hassan, M. J. M. (2023). FIA-spectrophotometric method for the determination of amoxicillin in pharmaceuticals; application of AES, GAPI, and AGREE greenness assessment tools. MethodsX, 11, 102437.‏

[43]. Triebl, A., Trötzmüller, M., Hartler, J., Stojakovic, T., & Köfeler, H. C. (2017). Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B, 1053, 72-80.‏

[44]. Bilgen, G. (2022). Long-term compressive strength and microstructural appraisal of seawater, lime, and waste glass powder–treated clay soils. Arabian Journal of Geosciences, 15(9), 895.‏

[45]. Nagaraja, P., Yathirajan, H. S., Sunitha, K. R., & Vasantha, R. A. (2002). Novel methods for the rapid spectrophotometric determination of dapsone. Analytical letters, 35(9), 1531-1540.‏

[46]. Revanasiddappa, H. D., &Manju, B. (2001). A spectrophotometric method for the determination of metoclopramide HCl and dapsone. Journal of pharmaceutical and biomedical analysis, 25(3-4), 631-637.‏‏



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com