Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5696

Published

2025-08-26

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Harianingsih Harianingsih, Nur Qudus, Catur Rini Widyastuti, Nuni Widiarti, Nabila Khoirunisa, Kristian Saputra

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Harianingsih Harianingsih, Nur Qudus, Catur Rini Widyastuti, Nuni Widiarti, Nabila Khoirunisa, & Kristian Saputra. (2025). Plasma electrolysis as a sustainable strategy for Remazol Red RB-133 degradation in azo dye wastewater. Applied Chemical Engineering, 8(3), ACE-5696. https://doi.org/10.59429/ace.v8i3.5696
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Plasma electrolysis as a sustainable strategy for Remazol Red RB-133 degradation in azo dye wastewater

Harianingsih Harianingsih

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Nur Qudus

Department Civil Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Catur Rini Widyastuti

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Nuni Widiarti

Department Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Sekaran Gunungpati, Semarang 50029, Indonesia

Nabila Khoirunisa

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Kristian Saputra

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia


DOI: https://doi.org/10.59429/ace.v8i3.5696


Keywords: plasma electrolysis; azo dye; Remazol Red RB-133; hydroxyl radical; wastewater treatment; COD; TOC; LC-MS/MS; UV-Vis spectroscopy


Abstract

This study investigates the degradation of Remazol Red RB-133 in batik wastewater using plasma electrolysis, an advanced oxidation process (AOP) that generates highly reactive hydroxyl radicals (●OH). The plasma system, operated at 60 °C with air injection, achieved rapid degradation 86.4% within 5 minutes and up to 99% after 60 minutes exceeding the performance of non-plasma techniques such as electrocoagulation. Degradation kinetics were characterized through UV-Vis spectroscopy and LC-MS/MS, revealing the progressive breakdown of azo chromophores and aromatic rings into low-molecular-weight, less toxic intermediates, which were subsequently mineralized into CO₂ and H₂O, as indicated by significant degradation in Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). Mass spectral analysis confirmed the formation and subsequent transformation of intermediate compounds, including carboxylic acids and inorganic ions such as SO₄²⁻, NO₃⁻, and NH₄⁺. The degradation mechanism followed a radical-based pathway comprising initiation, propagation, and termination stages. These findings demonstrate the high efficiency and environmental sustainability of plasma electrolysis for treating dye-laden wastewater and provide insights into the mechanistic pathway of azo dye mineralization, contributing to the advancement of water treatment technologies aligned with SDG 6.


References

[1]. Da Silva LT, Crisóstomo JV, da Silva LP, Monteiro ND, Oliveira JT, do Nascimento HO, Longhinotti E, Romero FB, de Oliveira AG, do Nascimento RF. Influence study of cationic surfactant, temperature, and current on the electrocoagulation process for removal of Remazol Red RB 133 by central composite design and response surface methodology. Journal of SolidState Electrochemistry 2024; 22, 1-27. https://doi.org/10.1007/s10008-024-05959-7

[2]. Kusworo TD, Kumoro AC, Aryanti N, Hasbullah H, Chaesarifa DR, Fauzan MD, Dalanta F. Developing a robust photocatalytic and antifouling performance of PVDF membrane using spinel NiFe2O4/GO photocatalyst for efficient industrial dye wastewater treatment. Journal of Environmental Chemical Engineering 2023; 11(2), 109449. https://doi.org/10.1016/j.jece.2023.109449

[3]. Anowar Hossain M. Simulation of chromatic and achromatic assessments for camouflage textiles and combat background. The Journal of Defense Modeling and Simulation 2023; 20(3), 317-32. https://doi.org/10.1177/15485129211067759

[4]. Harianingsih, Syarfina Farisah, Eva Karamah, and Nelson Saksono. Air plasma electrolysis method for synthesis of liquid nitrate fertilizer with K2HPO4 and K2SO4 electrolytes. Int J Plasma Environ Sci Technol 2021; 15(1), e01005.https://doi.org/10.34343/ijpest.2021.15.e01005

[5]. Farawan, Bening, Riedo Devara Yusharyahya, Misri Gozan, and Nelson Saksono. A novel air plasma electrolysis with direct air injection in plasma zone to produce nitrate in degradation of organic textile dye. Environmental Progress & Sustainable Energy 2021; 40 (6), e13691. https://doi.org/10.1002/ep.13691

[6]. Karamah, Eva Fathul, Nelson Saksono, and Zainal Zakaria. The effect of power on nitrate synthesis and the emission intensities of reactive species using anodic plasma electrolysis. ASEAN Journal of Chemical Engineering. 2022;316-325.https://doi.org/10.22146/ajche.76790

[7]. Farawan, Bening, Ilma Darojatin, and Nelson Saksono. Simultaneous degradation of phenol-Cr (VI) wastewater on air injection plasma electrolysis using titanium anode. Chemical Engineering and Processing-Process Intensification 2022; 172, 108769. https://doi.org/10.1016/j.cep.2021.108769

[8]. Rafaie HA, Shohaimi NA, Ramli NI, Ishak ZI, Rosmi MS, Mohamed MA, Hir ZA. Application of hybrid polymeric materials as photocatalyst in textile wastewater. InPolymer Technology in Dye-containing Wastewater: Singapore: Springer Nature Singapore 2022; 1, 101-143. https://doi.org/10.1007/978-981-19-1516-1_5

[9]. Rekha HB, dan Murthy UN. Electrochemical Degradation of Remazol Red RB 133 Using Sacrificial Electrodes. International Journal of Science and Technology 2018; 106-28. https://dx.doi.org/10.20319/mijst.2018.41.106128

[10]. Ajaz M, Shakeel S, Rehman A. Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology 2020; 149-59. https://doi.org/10.1007/s10123-019-00103-2

[11]. Shaima I., M, Naghmash MA, El-Molla SA. Synthesis and application of nano-hematite on the removal of carcinogenic textile remazol red dye from aqueous solution. Desalination and Water Treatment 2020, 70-86. https://doi.org/10.5004/dwt.2020.25063

[12]. Hossain MA, Kayes N, Hossain M. Removal of Remazol Red RR from Aqueous Solution by Glass Supported Films of Synthesized ZnO Nanoparticles. ICRRD Qual. Index Res. J 2021;109-19. https://doi.org/10.53272/icrrd.v2i3.2

[13]. Pipil H, Yadav S, Chawla H, Taneja S, Verma M, Singla N, Haritash AK. Comparison of TiO2 catalysis and Fenton’s treatment for rapid degradation of Remazol Red Dye in textile industry effluent. Rendiconti Lincei. Scienze Fisiche e Naturali 2022; 33(1),105-14. https://doi.org/10.1007/s12210-021-01040-x

[14]. Luo Y, Jiang H, Ding LX, Chen S, Zou Y, Chen GF, Wang H. Selective synthesis of either nitric acid or ammonia from air by electrolyte regulation in a plasma electrolytic system. ACS Sustainable Chemistry & Engineering 202;11(32),11737-44. https://pubs.acs.org/doi/10.1021/acssuschemeng.2c06506

[15]. Pakprom J, Santalunai S, Charoensiri W, Ramjanthuk S, Janpangngern P, Thongsopa C, Thosdeekoraphat T, Santalunai N, Santalunai S. Optimizing Nitrate Fertilizer Production Using Plasma-Activated Water (PAW) Technology: An Analysis of Dielectric Properties. Applied Sciences 2024; 14(21), 9997. https://doi.org/10.3390/app14219997

[16]. Tomar S, Shahadat M, Ali SW, Joshi M, Butola BS. Treatment of textile‐wastewater using green technologies. Green chemistry for sustainable water purification 2023; 24,129-56. https://doi.org/10.1002/9781119852322.ch6

[17]. Patil DJ, Grewal HS. Auto ignition assisted synthesis of magnetic CaFe2O4: Exploring role of fuel molecule and amplest dye dismissal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024; 5,134750. https://doi.org/10.1016/j.colsurfa.2024.134750

[18]. Deng, F., Qiu, S., Olvera-vargas, H., Zhu, Y., Gao, W., Yang, J., & Ma, F. Electrocatalytic sulfathiazole degradation by a novel nickel-foam cathode coated with nitrogen-doped porous carbon. Electrochimica Acta, 2019; 297, 21-30. https://doi.org/10.1016/j.electacta.2018.11.180

[19]. Tsuchida, Yuto, Naoya Murakami, Tatsuya Sakakura, Yoshiyuki Takatsuji, and Tetsuya Haruyama. Drastically increase in atomic nitrogen production depending on the dielectric constant of beads filled in the discharge space. ACS omega 2021; 44(6), 29759-29764.https://pubs.acs.org/doi/10.1021/acsomega.1c04201

[20]. Harianingsih, H., Widiarti, N., Sulstyawan, V. N., Kusumaningrum, M., Pangestu, I. S., Putra, M. R. F., Kurniawan, T. A.The Effect of Fe2+ Ions Addition on Reactive Oxygen and Nitrogen Species (RONSs) with Controlled Initial pH of Nitrate Synthesis using Plasma Electrolysis Reactor. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2025; 125(2),170–179. https://doi.org/10.37934/arfmts.125.2.170179

[21]. Zhang, P., Sun, M., Liang, J., Xiong, Z., Liu, Y., Peng, J., ... & Lai, B. pH-modulated oxidation of organic pollutants for water decontamination: A deep insight into reactivity and oxidation pathway. Journal of hazardous materials 2024; 471, 134393. https://doi.org/10.1016/j.jhazmat.2024.134393

[22]. Harianingsih, Arief A, Sri H, Maharani K, Amadea V., P., Faizya P., M., and Nelson S. Cathodic and Anodic Plasma Electrolysis on Nitrate Synthesis. ASEAN Engineering Journal 2024; 14(3), 175-181.https://doi.org/10.11113/aej.v14.21525

[23]. Sukreni, T., Bismo, S., & Saksono, N. Effect of low flow rate of air injection on remazol red degradation in contact glow discharge electrolysis reactor. J. Environ. Sci. Technol 2019; 12(5), 197-204. https://doi.org/10.3923/jest.2019.197.204

[24]. Farawan, B., Yusharyahya, R. D., Gozan, M., & Saksono, N. A novel air plasma electrolysis with direct air injection in plasma zone to produce nitrate in degradation of organic textile dye. Environmental Progress & Sustainable Energy 2021; 40(6), e13691. https://doi.org/10.1002/ep.13691

[25]. Harianingsih, Harianingsih, Woro Dyah Pita Rengga, Maharani Kusumaningrum, Nadya Alfa Cahaya Imani, Nelson Saksono, and Zainal Zakaria. The Effect of Air Injection for Formation of Radicals in Liquid Glow Discharge Plasma Electrolysis with K2SO4 Solution. Reaktor 2023; 23(2), 37-43. https://doi.org/10.14710/reaktor.23.2.37-43

[26]. Thanavel, M., Bankole, P. O., Selvam, R., Govindwar, S. P., & Sadasivam, S. K. Synergistic effect of biological and advanced oxidation process treatment in the biodegradation of Remazol yellow RR dye. Scientific reports 2020; 10(1), 20234. https://doi.org/10.1038/s41598-020-77376-5

[27]. Harianingsih, Harianingsih, Vera Noviana Sulistyawan, Maharani Kusumaningrum, Nuni Widiarti, Indra Sakti Pangestu, Muhammad Rizky Fahrizal Putra, Afifah Ritmadanti, and Tonni Agustiono Kurniawan. The Effect of Air Injection Flowrate on Nitrate Synthesis with The Addition of Fe2+ Ions Using Plasma Electrolysis. In E3S Web of Conferences 2024; 576, 06017. https://doi.org/10.1051/e3sconf/202457606017

[28]. Saksono, Nelson, Harianingsih, Bening Farawan, Veny Luvita, and Zainal Zakaria. Reaction pathway of nitrate and ammonia formation in the plasma electrolysis process with nitrogen and oxygen gas injection. Journal of Applied Electrochemistry 2023; 53, 1183-1191.https://doi.org/10.1007/s10800-023-01849-4

[29]. Saksono, Nelson, Patresia Suryawinata, Zainal Zakaria, and Bening Farawan. Fixation of air nitrogen to ammonia and nitrate using cathodic plasma and anodic plasma in the air plasma electrolysis method. Environmental Progress & Sustainable Energy 2024; 43, e14331.https://doi.org/10.1002/ep.14331



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com