Published
2025-08-25
Issue
Section
Original Research Article
License
Copyright (c) 2025 Maram Ahmed Alaadin, Ghufran Ashour Hammood, Sahar T. Adday, Amer Hamied Hussein, Anmar Haitham Nouri

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Synthesis of carbon nanoparticles from glucose, evaluation of their phenol adsorption capacity, and study their potential as drug delivery systems for treating human pancreatic cancer cells
Maram Ahmed Alaadin
Faculty of Production and Metallurgical Engineering, Department of Metallurgical Engineering, University of Technology, Baghdad, 10066, Iraq
Ghufran Ashour Hammood
Department of Chemistry, College of Science, University of Baghdad, Baghdad, 10071, Iraq
Sahar T. Adday
Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, 10071, Iraq
Amer Hamied Hussein
Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, 10071, Iraq
Anmar Haitham Nouri
Shaheed Mustafa Secondary School, Diyala Education Directorate, Baqubah, 32001, Iraq
DOI: https://doi.org/10.59429/ace.v8i3.5702
Keywords: carbon nanoparticles; phenol; drug delivery; MTT assay; pancreatic cancer; cytotoxicity
Abstract
This research focuses on the synthesis of carbon nanoparticles from glucose through the wet chemical method. The dimensions of the generated particles were evaluated through XRD technology, and the capacity of the synthesized nanoparticles to adsorb phenol particles on their surface was illustrated using UV-VIS and FTIR analysis. The calculation of the loading efficiency (DLE) indicated a remarkably high ratio. The dimensions and morphology of the nanoparticles post-adsorption were assessed through Transmission Electron Microscopy (TEM), revealing the presence of tiny particles within the nanoscale range. To assess the cytotoxic effects on pancreatic cancer cells, various medication doses were prepared utilizing the MTT assay. The results indicate that the generated phenol-loaded nanoparticles exhibit significant potential in eradicating cancer cells.
References
[1]. F. Nugen, D. Garcia, S. Sohn, J. Mickley, C. Wyles, BJ Erickson, M.J. Taunton. Application of natural language processing in total joint arthroplasty: opportunities and challenges. The Journal of Arthroplasty. 2023 Oct 1;38(10):1948-53.
[2]. D.S. MICHAUD, Epidemiology of pancreatic cancer. Minerva chirurgica, 2004, 59.2: 99-111. https://europepmc.org/article/med/15238885
[3]. A.H. Alhammer, S.I. Al-juboori, S.A. Mudhafar. APR-246 enhances the anticancer effect of doxorubicin against p53-mutant AsPC-1 pancreatic cancer cells. Baghdad Sci J. 2024 Aug 1;21:2551-60.
[4]. Prevention I. Standards of medical care in diabetes—2011. Diabetes Care. 2011 Jan 1;34:S11.
[5]. A. Araszkiewicz, E. Bandurska-Stankiewicz, S. Borys, A. Budzyński, K. Cyganek, K. Cypryk, A. Czech, L. Czupryniak, J. Drzewoski, G. Dzida, T. Dziedzic. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clinical Diabetology. 2021;10(1):1-13.
[6]. Y. Cinthya S.; WINTER, Jordan M. Pancreatic cancer: a review. Gastroenterology Clinics, 2016, 45.3: 429-445. doi: 10.1016/j.gtc.2016.04. 003.
[7]. Hussein, Amer Hamied (2025) "Studying the Effect of Thymol-Containing Nano Emulsion Extracted from Thyme on Angiogenesis Controlling Genes VEGF and VEGFR in a Human Liver Cancer cell Line," Baghdad Science Journal:Vol.22:Iss.4,Article 8.
[8]. DOI: https://doi.org/10.21123/bsj.2024.10591
[9]. A. Fadhil Z, Mohammad Amin EE, Mohammed Mahmood S, Hamied Hussein A. Preparation of a nanoemulsion from clove oil extract containing phenol and studying its effect on a human MCF-7 breast cancer cell line. Salud, Ciencia y Tecnología [Internet]. 2025 Apr. 11 [cited 2025 May 1];5:1535. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1535
[10]. P. Ma, R.J. Mumper. Paclitaxel nano-delivery systems: a comprehensive review. Journal of nanomedicine & nanotechnology. 2013 Feb 2;4(2):1000164.
[11]. J.K. Patra, G. Das, L.F. Fraceto, E.V. Campos, M.D Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K Swamy, S. Sharma, S. Habtemariam. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018 Dec;16:1-33.
[12]. Kinetic of Adsorption and Releasing of Ciprofloxacin Drug in Mesoporous Silica Nanoparticles. Baghdad Sci J [Internet]. 2021 Jun 1 [cited 2025 Jan 21];18(2):0357. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4778.
[13]. M.H. Raheema, G.S. Jaber. Synthesis of Carbon Nanotubes Using Modified Hummers Method for Cathode Electrodes in Dye-Sensitized Solar Cell. Baghdad Science Journal. 2023.
[14]. G.A. Hamoad, S.A. Sahib. Synthesis and characterization of new graphene oxide nano derivatives, and study of their biological activities. Int J Drug Deliv Technol [Internet]. 2021 Jul-Sep [cited 2025 Jan 21];11(3).
[15]. DE SOUZA SIMÕES, Lívia, et al. Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 2017, 243: 23-45.
[16]. R. Sinan, S. Abed. Spectrophotometric determination of metoclopramide hydrochloride in tablets by diazotization and coupling reaction with phenol. Iraqi Journal of Science. 2009;50(2):136-43.
[17]. B.T. Zhang, X. Zheng, H.F. Li, J.M. Lin. Application of carbon-based nanomaterials in sample preparation: A review. Analytica chimica acta. 2013 Jun 19;784:1-7.
[18]. S.C. Ray, A. Saha, N.R. Jana, R. Sarkar. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. The Journal of Physical Chemistry C. 2009 Oct 29;113(43):18546-51.
[19]. B.M. Rosen, K.W. Quasdorf, D.A. Wilson, N. Zhang, A.M. Resmerita, N.K. Garg, V. Percec. Nickel-catalyzed cross-couplings involving carbon− oxygen bonds. Chemical reviews. 2011 Mar 9;111(3):1346-416.
[20]. E.E. Pérez Ramírez, M. de la Luz Asunción, V. Saucedo Rivalcoba, A.L. Martínez Hernández, C. Velasco Santos. Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis. Phenolic Compounds-Natural Sources, Importance and Applications.
[21]. R. Das, M.E. Ali, S. Bee Abd Hamid, M.S. Annuar, S. Ramakrishna. Common wet chemical agents for purifying multiwalled carbon nanotubes. Journal of Nanomaterials. 2014;2014(1):945172.
[22]. J.G. Yu, X.H. Zhao, H. Yang, X.H. Chen, Q. Yang, L.Y. Yu, J.H. Jiang, X.Q. Chen. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment. 2014 Jun 1;482:241-51.
[23]. A. Borges, V. de Freitas, N. Mateus, I. Fernandes, J. Oliveira. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants. 2020 Oct 15;9(10):998.
[24]. H.Y. Jo, Y. Kim, H.W. Park, H.E. Moon, S. Bae, J. Kim, D.G. Kim, S.H. Paek. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Experimental neurobiology. 2015 Sep;24(3):235.
[25]. M. Twarużek, E. Zastempowska, E. Soszczyńska, I. Ałtyn. The use of in vitro assays for the assessment of cytotoxicity on the example of MTT test.
[26]. Y.J. Lee, E.Y. Ahn, Y. Park. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale research letters. 2019 Dec;14(1):129.
[27]. N. Sanoj Rejinold, M. Muthunarayanan, K.P. Chennazhi, S.V. Nair, R. Jayakumar. Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. Journal of biomedical nanotechnology. 2011 Aug 1;7(4):521-34.
[28]. M.A. Alqahtani, M.R. Al Othman, & A.E. Mohammed, Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Sci Rep 10, 16781 (2020).
[29]. D. Mittal, G. Kaur, P. Singh, K. Yadav, S.A. Ali. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology. 2020 Dec 4;2:579954.
[30]. P.C. Ray, H. Yu, P.P. Fu. Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C. 2009 Feb 17;27(1):1-35.
[31]. S. Rajabi, A. Ramazani, M. Hamidi, T. Naji. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences. 2015 Dec;23:1-6.
[32]. A.A. Al-Ali, K.A. Alsalami, A.M. Athbi. Cytotoxic effects of CeO2 NPs and β-Carotene and their ability to induce apoptosis in human breast normal and cancer cell lines. Iraqi Journal of Science. 2022 Mar 30:923-37.
[33]. S.M. Fathi, I.A. Ali. Cytotoxic Effect of the Alcoholic Extract of Conocarpus erectus Leaves on MDA-MB 231 and MCF7 Breast Cancer Cell Lines. Iraqi Journal of Science. 2023 Jan 30:84-90.
[34]. Z.O. Salman, B.M. Alwash, E.J. Kadhim. Isolation and Identification of Flavonoid Compounds from Euphorbia Milii Plant Cultivated in Iraq and Evaluation of its Genetic Effects on Two Types of Cancer Cell Line. Baghdad Science Journal. 2024.
[35]. A.H. Alhammer, S.I. Al-juboori, S.A. Mudhafar. APR-246 enhances the anticancer effect of doxorubicin against p53-mutant AsPC-1 pancreatic cancer cells. Baghdad Sci J. 2024 Aug 1;21:2551-60.
[36]. S. Fatimah, R. Ragadhita, D.F. Al Husaeni, A.B. Nandiyanto. How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering. 2022;2(1):65
[37]. Yang J, Wang X, Liu L, et al. Advanced multifunctional nanomaterials for cancer therapy. Adv Mater. 2025;37(25):e2508047. doi:10.1002/adma.202508047.
[38]. Kumar P, Sharma R, Singh A, et al. Recent advances in synthesis and applications of carbon-based nanomaterials. Mater Chem Phys. 2025;295:131098. doi:10.1016/j.matchemphys.2025.131098.
[39]. Chen L, Zhang Y, Li W, et al. Efficient removal of phenolic compounds using nanostructured adsorbents. Chem Eng J. 2024;460:150356. doi:10.1016/j.cej.2024.150356.
[40]. Smith T, Johnson M, Lee H. Characterization and cytotoxicity of phenol-loaded nanoparticles. ACS Omega. 2024;9(30):18640-18650. doi:10.1021/acsomega.4c04134.
[41]. Singh N, Gupta R, Verma P. Wet chemical synthesis of carbon nanoparticles for drug delivery applications. Appl Nanosci. 2022;12:4519-4531. doi:10.1007/s13204-022-02645-w.
[42]. Zhang Y, Li J, Wang S. Photocatalytic properties of modified carbon nanomaterials. Phys Status Solidi C. 2021;18(2):2100073. doi:10.1002/ppsc.202100073.








