Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5705

Published

2025-08-26

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Nur Qudus, Harianingsih Harianingsih, Virgiawan Adi Kristianto, Indra Sakti Pangestu, Satria Agung Saputra, Nurul Padilah Rahmawati, Asti Dwi Afidah, Jurina Jaafar

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Nur Qudus, Harianingsih Harianingsih, Virgiawan Adi Kristianto, Indra Sakti Pangestu, Satria Agung Saputra, Nurul Padilah Rahmawati, … Jurina Jaafar. (2025). Enhanced photoelectrocatalysis degradation of batik wastewater using Nitrogen-Doped Titanium Dioxide (TiO₂). Applied Chemical Engineering, 8(3), ACE-5705. https://doi.org/10.59429/ace.v8i3.5705
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Enhanced photoelectrocatalysis degradation of batik wastewater using Nitrogen-Doped Titanium Dioxide (TiO₂)

Nur Qudus

Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Harianingsih Harianingsih

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Virgiawan Adi Kristianto

Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Indra Sakti Pangestu

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Satria Agung Saputra

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Nurul Padilah Rahmawati

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran Gunungpati, Semarang 50229, Indonesia

Asti Dwi Afidah

DSIH Office, Universitas Negeri Semarang, Sekaran Gunungpati, Semarang 50029, Indonesia

Jurina Jaafar

Faculty of Civil Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia


DOI: https://doi.org/10.59429/ace.v8i3.5705


Keywords: azo dyes; batik wastewater; clean water, degradation; N-doped TiO2; photoelectrocatalyti


Abstract

Batik is a significant textile industry in Indonesia, but it produces liquid waste containing azo dyes that are toxic and can pollute the environment. One approach to mitigate the impact of this waste is through TiO₂ photoelectrocatalysis. This study aims to improve the photoelectrocatalysis performance of TiO₂ by nitrogen doping, in order to achieve more efficient degradation of batik waste. This improvement is reflected in the increased intensity of the anatase phase, the reduction in band gap, and the formation of N-Ti-O bonds. N-doped TiO₂ was synthesized by anodizing titanium plates using urea at molar ratios of 50:50, 95:5, and 90:10, followed by annealing at 500°C for 3 hours. The results showed that the photoelectrocatalysis efficiency for the 90:10 TiO₂:urea ratio reached 90%, significantly higher than undoped TiO₂, which only degraded 50% of the batik waste. The band gap of N-doped TiO₂ was reduced to 2.7 eV, while undoped TiO₂ had a band gap of 3.2 eV. The formation of N-Ti-O bonds was also observed, confirming that nitrogen doping effectively enhances TiO₂'s ability to degrade batik waste through photoelectrocatalysis.


References

[1]. Sugiarto, E., Syarif, M. I., Mulyono, K. B., bin Othman, A. N., & Krisnawati, M. How is ethnopedagogy-based education implemented? (A case study on the heritage of batik in Indonesia). Cogent Education 2025; 12(1), 2466245. https://doi.org/10.1080/2331186X.2025.2466245

[2]. Anggadwita, G., Indarti, N., & Ratten, V. Women entrepreneurs in the craft industry: a case study of the batik industry during the COVID-19 pandemic. International Journal of Sociology and Social Policy 2023; 43(11/12), 1029-1046. https://doi.org/10.1108/IJSSP-12-2022-0305

[3]. Rajendran, S., Kalairaj, A., & Senthilvelan, T. J. B. C. A comprehensive review on enzymatic decolorization of various azo dyes using laccase for the abatement of industrial pollution. Biomass Conversion and Biorefinery 2025; 15(9), 13079-13101. https://doi.org/10.1007/s13399-024-06104-0

[4]. Vishani, D. B., & Shrivastav, A. Enzymatic decolorization and degradation of azo dyes. Development in wastewater treatment research and processes 2022; 419-432. https://doi.org/10.1016/B978-0-323-85657-7.00020-1

[5]. Shafik, W. SDG 6: Clean Water and Sanitation—Smart Water Management. In Factoring Technology in Global Sustainability: A Focus on the Sustainable Development Goals 2025; 223-248. https://doi.org/10.1007/978-981-96-7299-8_8

[6]. Andriani, D., Andriyani, R., Prabandani, A., Yuniati, M. D., Yanto, D. H. Y., Zaidi, N. S., & Puteh, M. H. Characterization and Treatment Methods of Hazardous Compounds in Batik Wastewater: A Review. International Journal of Environmental Research 2025; 19(3), 83. https://doi.org/10.1007/s41742-025-00741-7

[7]. Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021; 28(17), 10715-10739. https://doi.org/10.1007/s10570-021-04228-4

[8]. Jamil, P. A. S. M., Aziz, N. A., Bashir, M. J., Aziz, H. A., & Hung, Y. T. Treatment of textile effluent. In Industrial waste engineering 2024; pp. 43-86. https://doi.org/10.1007/978-3-031-46747-9_2

[9]. Nagaraj, K., Radha, S., Deepa, C. G., Raja, K., Umapathy, V., Badgujar, N. P., & Uthra, C. Photocatalytic advancements and applications of titanium dioxide (TiO2): Progress in biomedical, environmental, and energy sustainability. Next Research 2025; 100180. https://doi.org/10.1016/j.nexres.2025.100180

[10]. Sukrey, N. A., Bushroa, A. R., & Rizwan, M. Dopant incorporation into TiO2 semiconductor materials for optical, electronic, and physical property enhancement: doping strategy and trend analysis. Journal of the Australian Ceramic Society 2024; 60(2), 563-589. https://doi.org/10.1007/s41779-023-00958-9

[11]. Chauke, N. M., Ngqalakwezi, A., & Raphulu, M. Transformative advancements in visible-light-activated titanium dioxide for industrial wastewater remediation. International Journal of Environmental Science and Technology 2025; 1-32. https://doi.org/10.1007/s13762-025-06397-2

[12]. Zhang, X., & Ma, Y. Towards High-Efficiency Photocatalytic TiO2 Nanosheets: Mechanisms, Modifications, and Breakthroughs. Physical Chemistry Chemical Physics 2025. https://doi.org/10.1039/D5CP00939A

[13]. Surjo, P., Pratiwi, R., Yudianti, R., & Dewi, E. L. Highly efficient CuO-doped titania nanotube arrays in photocatalysis-electrocoagulation process for bacterial disinfection. Case Studies in Chemical and Environmental Engineering 2024; 9, 100742. https://doi.org/10.1016/j.cscee.2024.100742

[14]. Zuo, C., Tai, X., Jiang, Z., Liu, M., Jiang, J., Su, Q., & Yan, X. S-Scheme 2D/2D Heterojunction of ZnTiO3 Nanosheets/Bi2WO6 Nanosheets with Enhanced Photoelectrocatalytic Activity for Phenol Wastewater under Visible Light. Molecules 2023; 28(8), 3495. https://doi.org/10.3390/molecules28083495

[15]. Dutta, A., Nayak, M., Nag, R., Bera, A., Bhaumik, S., Akhtar, A. J., & Saha, S. K. Precipitation-assisted, low-temperature-annealed TiO2 and its nanocomposites-based photoanode for DSSCs. Journal of Materials Science: Materials in Electronics 2024; 35(4), 292. https://doi.org/10.1007/s10854-024-12055-z

[16]. Jainudin, S., Abdullah, S., Jaafar, J., Othman, Z., Baki, A. M., & Hamzah, N. Characteristic and performance of polysulphone–polyethylene glycol synthetic hybrid membrane in water purification system. International Journal of Advanced Technology and Engineering Exploration 2021, 8(76), 484–494. https://doi.org/10.19101/IJATEE.2020.762178

[17]. Cho, J., Kim, K. S., Kim, S., Shao, Y., Kim, Y. T., & Park, S. Substrate‐Driven Catalyst Reducibility for Oxygen Evolution and Its Effect on the Operation of Proton Exchange Membrane Water Electrolyzers. Small Structures 2024; 5(1), 2300276. https://doi.org/10.1002/sstr.202300276

[18]. Sultana, S., Syrek, K., & Sulka, G. D. Revolutionizing lignin photovalorization: recent advances in TiO2-based materials and beyond in pursuit of optimal solutions for a sustainable future. Sustainable Energy & Fuels 2024; 8(11), 2383-2422. https://doi.org/10.1039/D4SE00299G

[19]. Hu, C., Xia, F., Zhou, C., Wang, H., Zhou, C., Tao, Q., & Meng, Y. Hierarchical Hydrogels Induced by Tuning Crystalline and Secondary Ordered Structures. ACS Applied Polymer Materials 2025. https://doi.org/10.1021/acsapm.5c01258

[20]. Lian, P., Qin, A., Liu, Z., Ma, H., Liao, L., Zhang, K., & Qin, Y. One-Step Synthesis of Nitrogen-Doped TiO2 Heterojunctions and Their Visible Light Catalytic Applications. Materials 2025; 18(10), 2400. https://doi.org/10.3390/ma18102400

[21]. Sharma, M., Sajwan, D., Gouda, A., Sharma, A., & Krishnan, V. Recent progress in defect‐engineered metal oxides for photocatalytic environmental remediation. Photochemistry and Photobiology 2024; 100(4), 830-896. https://doi.org/10.1111/php.13959

[22]. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., ... & Yue, X. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials 2022; 5(1), 68-114. https://doi.org/10.1002/eem2.12171

[23]. Janczarek, M., & Kowalska, E. Defective dopant-free TiO2 as an efficient visible light-active photocatalyst. Catalysts 2021; 11(8), 978. https://doi.org/10.3390/catal11080978

[24]. Ifijen, I. H., Akobundu, U. U., Chukwu, J. U., Obuba, S. E., Edem, S. E., Solomon, E. C., & Okeke, E. I. Titanium-based nanoparticles: innovations in energy applications, wastewater treatment, and tissue engineering for cardiac regeneration. Discover Chemistry 2025; 2(1), 1-58. https://doi.org/10.1007/s44371-025-00142-x

[25]. Prasad, A., Singh, F., Singh, S. D., Ojha, S., & Ramola, R. C. Raman's scattering study of nano-crystalline Cr and N-doped TiO2 film: Insights from structural, morphological and optical characterizations. Results in Surfaces and Interfaces 2025; 100557. https://doi.org/10.1016/j.rsurfi.2025.100557

[26]. Kadiyala, N., Tirukkovalluri, S. R., Gorli, D., Genji, J., Raffiunnisa, Matangi, R., & Singupilla, S. S. Ionic Liquid Mediated Sol Gel Method for Fabrication of Nanostructured Cerium and Phosphorus Doped TiO2-A Benign Photocatalyst: Diversified Applications in Degradation of Dyes and Microbes. ACS omega 2025; 10(3), 2658-2678. https://doi.org/10.1021/acsomega.4c07743

[27]. Dai, F., Zhang, S., Wang, Q., Chen, H., Chen, C., Qian, G., & Yu, Y. Preparation and characterization of reduced graphene oxide/TiO2 blended polyphenylene sulfone antifouling composite membrane with improved photocatalytic degradation performance. Frontiers in Chemistry 2021; 9, 753741. https://doi.org/10.3389/fchem.2021.753741

[28]. Rahman, N. A. A. A., Khasri, A., Salleh, N. H. M., & Jamir, M. R. M. Enhanced adsorption-photodegradation of tetracycline using Ce-N-co-doped AC/TiO2 photocatalyst: isotherms, kinetics, mechanism, and thermodynamic insight. Environmental Science and Pollution Research 2024; 31(49), 59398-59415. https://doi.org/10.1007/s11356-024-34948-6

[29]. Khan, R., Rahman, N., Prasannan, A., Ganiyeva, K., Chakrabortty, S., & Sangaraju, S. Phase transition and bandgap modulation in TiO2 nanostructures for enhanced visible-light activity and environmental applications. Scientific Reports 2025; 15(1), 20309. https://doi.org/10.1038/s41598-025-07000-x

[30]. Fu, W., Zhang, Y., Zhang, X., Yang, H., Xie, R., Zhang, S., & Xiong, L. Progress in promising semiconductor materials for efficient photoelectrocatalytic hydrogen production. Molecules 2024; 29(2), 289. https://doi.org/10.3390/molecules29020289



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com