Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5736

Published

2025-09-18

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Ahmed Makki AL-Sulaiman*, Ali Turki Alzeyadi, Hasan Mahdi M. Al-Khateeb

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Ahmed Makki AL-Sulaiman, Ali Turki Alzeyadi, & Hasan Mahdi M. Al-Khateeb. (2025). Optimization of the design of anoxic/oxic process in wastewater treatment plant using genetic algorithms. Applied Chemical Engineering, 8(3), ACE-5736. https://doi.org/10.59429/ace.v8i3.5736
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Optimization of the design of anoxic/oxic process in wastewater treatment plant using genetic algorithms

Ahmed Makki AL-Sulaiman

Civil Eng. Dep, College of Engineering, University of Al-Qadisiyah, 58002, Qadisiyah, Iraq

Ali Turki Alzeyadi

Civil Eng. Dep, College of Engineering, University of Al-Qadisiyah, 58002, Qadisiyah, Iraq

Hasan Mahdi M. Al-Khateeb

Civil Engineering Dep, Faculty of Engineering, University of Kufa, 540011,Najaf Province, Iraq


DOI: https://doi.org/10.59429/ace.v8i3.5736


Keywords: Anoxic; oxic; optimization; wwtp; genetic algorithm


Abstract

Optimizing the biodegradation process in wastewater treatment plants (WWTPs) is a crucial factor in enhancing the performance and cost-effectiveness of biological treatment. This study investigates the optimization of anoxic/oxic processes using genetic algorithms (GA) to minimize capital, maintenance, and operational costs while improving nitrogen removal efficiency. A WWTP in Karbala, Iraq, was selected as a case study, and GA was applied to identify the optimum design parameters for different influent conditions. The results indicate that the optimal detention time for anoxic units ranges from 3 to 4 hours, while oxic units perform best with detention times between 8 and 12 hours. The return activated sludge (RAS) cycle was optimized at 0.8–1.5 hours, with an ideal solids retention time (SRT) of 13 days. For the secondary clarifier, optimum diameters were found to be 90 m, 50 m, and 15 m at maximum, average, and minimum flowrates, respectively. The GA-based approach demonstrates robust performance in handling multi-variable optimization, ensuring stable treatment efficiency under varying influent loads. Findings highlight that efficiency increases from 85% to 98% with decreasing influent flow, while stability is maintained despite fluctuations in suspended solids. This work confirms that GA provides an effective decision-support tool for WWTP design, offering reliable parameter predictions that enhance system sustainability and adaptability. The proposed framework can guide future developments in wastewater process optimization and serve as a transferable methodology for other environmental engineering applications.


References

[1]. Parsons C., Stüeken E.E., Rosen C.J., Mateos K., Anderson R.E., (2020), "Radiation of Nitrogen-Metabolizing Enzymes across the Tree of Life Tracks Environmental Transitions in Earth History", Geobiology; 19:18–34. doi: 10.1111/gbi.12419.

[2]. Mohamed D., Fergany M., Elhabbasha E.F., El-temsah M. (2022), "Productivity Improvement of Canola Genotypes Under Salinity Stress Conditions by Integration between Mineral and Nano-Scale Forms of Nitrogen Fertilizer", Arab. Univ. J. Agric. Sci. ;30:1–16. doi: 10.21608/ajs.2022.140893.1481.

[3]. Ahmed S.F., Kumar P.S., Kabir M., Zuhara F.T., Mehjabin A., Tasannum N., Hoang A.T., Kabir Z., Mofijur M. Threats, (2022), "Challenges and Sustainable Conservation Strategies for Freshwater Biodiversity", Environ. Res;214:113808. doi: 10.1016/j.envres.2022.113808.

[4]. Abdel-Shafy, H.I., Mansour, M.S.M., and Al-Sulaiman, Ahmed M., (2019), "Anaerobic/aerobic integration via UASB/enhanced aeration for greywater treatment and unrestricted reuse", Water Practice & Technology, 14(4), pp. 837–850. doi: 10.2166/wpt.2019.065

[5]. Rajta A., Bhatia R., Setia H., Pathania P., (2020), "Role of Heterotrophic Aerobic Denitrifying Bacteria in Nitrate Removal from Wastewater", J.Appl.Microbiol. ;128:1261–1278. doi: 10.1111/jam.14476.

[6]. Abdel-Shafy, Hussein I. & Al-Sulaiman, Ahmed M., (2014) "Efficiency of degreasing / settling tank followed by constructed wetland for greywater treatment". Egyptian. J. Chemistry, 57(5-6), pp. 435–446 doi: 10.21608/EJCHEM.2014.1062

[7]. Winkler M.K., Straka L. (2019), "New Directions in Biological Nitrogen Removal and Recovery from Wastewater", Curr. Opin. Biotechnol. ;57:50–55. doi: 10.1016/j.copbio.2018.12.007.

[8]. Abdel-Shafy, H.I.; and Al-Sulaiman, Ahmed M., (2015), "Assessment of physico-chemical processes for treatment and reuse of greywater", Egyptian Journal of Chemistry, 57(3), pp. 215–231. doi: 10.21608/EJCHEM.2014.1042

[9]. H. I. AbdelShafy, A. M. Ibrahim, A. M. AlSulaiman, and R. A. Okasha, (2024), "Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview", Ain Shams Eng. J., vol. 15, no. 1, p. 102293, doi: 10.1016/j.asej.2023.102293

[10]. Scandelai A.P.J., Zotesso J.P., Jegatheesan V., Cardozo-Filho L., Tavares C.R.G. (2020), "Intensification of Supercritical Water Oxidation (ScWO) Process for Landfill Leachate Treatment through Ion Exchange with Zeolite", Waste Manag. ; 101:259–267. doi: 10.1016/j.wasman.2019.10.005.

[11]. Priya E., Kumar S., Verma C., Sarkar S., Maji P.K., (2022). "A Comprehensive Review on Technological Advances of Adsorption for Removing Nitrate and Phosphate from Waste Water", J. Water Process Eng. ;49:103159. doi: 10.1016/j.jwpe.2022.103159.

[12]. Cai Y., Zhu M., Meng X., Zhou J.L., Zhang H., Shen X., (2022), "The Role of Biochar on Alleviating Ammonia Toxicity in Anaerobic Digestion of Nitrogen-Rich Wastes: A Review". Bioresour. Technol. ;351:126924. doi: 10.1016/j.biortech.2022.126924.

[13]. Huang H., Liu J., Zhang P., Zhang D., Gao F. (2017), "Investigation on the Simultaneous Removal of Fluoride, Ammonia Nitrogen and Phosphate from Semiconductor Wastewater Using Chemical Precipitation" Chem. Eng. J. ;307:696–706. doi: 10.1016/j.cej.2016.08.134.

[14]. Aghdam E., Xiang Y., Ling L., Shang C. (2021) "New Insights into Micropollutant Abatement in Ammonia-Containing Water by the UV/Breakpoint Chlorination Process" . ACS EST Water. ;1:1025–1034. doi: 10.1021/acsestwater.0c00286.

[15]. Capodaglio A.G., Hlavínek P., Raboni M., (2015). "Physico-Chemical Technologies for Nitrogen Removal from Wastewaters: A Review", Rev. Ambient. 10:481–498.

[16]. Cruz H., Law Y.Y., Guest J.S., Rabaey K., Batstone D., Laycock B., Verstraete W., Pikaar I. (2019), "Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management", Environ. Sci. Technol. ;53:11066–11079. doi: 10.1021/acs.est.9b00603.

[17]. McCarty P.L. (2018), "What Is the Best Biological Process for Nitrogen Removal: When and Why?", Environ. Sci. Technol. ;52:3835–3841. doi: 10.1021/acs.est.7b05832.

[18]. Mishra S., Singh V., Cheng L., Hussain A., Ormeci B. (2022), "Nitrogen Removal from Wastewater: A Comprehensive Review of Biological Nitrogen Removal Processes, Critical Operation Parameters and Bioreactor Design", J. Environ. Chem. Eng. ;10:107387. doi: 10.1016/j.jece.2022.107387.

[19]. Yellezuome D., Zhu X., Wang Z., Liu R., (2022). "Mitigation of Ammonia Inhibition in Anaerobic Digestion of Nitrogen-Rich Substrates for Biogas Production by Ammonia Stripping: A Review", Renew. Sustain. Energy Rev. ;157:112043. doi: 10.1016/j.rser.2021.112043.

[20]. Karri R.R., Sahu J.N., Chimmiri V., (2018), "Critical Review of Abatement of Ammonia from Wastewater". J. Mol. Liq. ;261:21–31. doi: 10.1016/j.molliq.2018.03.120.

[21]. Metcalf & Eddy, I., (2003), "Wastewater Engineering: Treatment and Reuse",4th edition., McGraw Hill Companies, Inc, New York,. 1.

[22]. Busacca, P. G., Marseguerra, M., Zio, E., (2001), "Multiobjective optimization by genetic algorithms: application to safety systems". Reliability Engineering and System Safety, 72; 59-74. doi: 10.1016/S0951-8320(00)00109-5

[23]. Hai Trung Do, Nam Van Bach, Lanh Van Nguyen , Hoang Thuan Tran, Minh Tuan Nguyen, (2021), " A design of higher-level control based genetic algorithms for wastewater treatment plants", Engineering Science and Technology, an International Journal, DOI:10.1016/j.jestch.2021.01.004

[24]. B. Holenda, Endre Domokos, Á. Rédey, J. Fazakas, (2007), "Aeration optimization of a wastewater treatment plant using genetic algorithm", DOI: 10.1002/oca.796

[25]. Ahmed Majeed Al-Kadmi and Zuhal Hamza, (2014), "Optimal Wastewater Treatment Design by Using Genetic Algorithm", Thiqar University Journal of Engineering Sciences, 5(2),pp.28-45. doi: 10.31663/utjes.v6i1.66

[26]. Hamza, Zuhal A.H. & Al-Sulaiman, Ahmed M., (2023), "Rainwater Quality Assessment Based on Artificial Neural Network Using Mathematical Models", Environment and Ecology Research, Vol. 11, No. 6, pp. 963 - 972, https://doi.org/10.13189/eer.2023.110607.

[27]. Subramani Raja, Ahamed Jalaludeen Mohammad Iliyas, Paneer Selvam Vishnu, Amaladas John Rajan, Maher Ali Rusho, Mohamad Reda Refaa, Oluseye Adewale Adebimpe. Sustainable manufacturing of FDM-manufactured composite impellers using hybrid machine learning and simulation-based optimization. Materials Science in Additive Manufacturing, 2025, 4(3), 025200033. https://doi.org/10.36922/MSAM025200033

[28]. Aarthi, S., Subramani, R., Rusho, M. A., Sharma, S., Ramachandran, T., Mahapatro, A., & Ismail, A. I. Genetically engineered 3D printed functionally graded-lignin, starch, and cellulose-derived sustainable biopolymers and composites: A critical review. International Journal of Biological Macromolecules, 2025, 145843.

[29]. Subramani, R., Leon, R. R., Nageswaren, R., Rusho, M. A., & Shankar, K. V. Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review. Lubricants, 2025, 13(7), 298.

[30]. Lazarus, B., Raja, S., Shanmugam, K., & Yishak, S. Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications, 2024.

[31]. Raja, S., Murali, A. P., & Praveenkumar, V. Tailored microstructure control in Additive Manufacturing: Constant and varying energy density approach for nickel 625 superalloy. Materials Letters, 2024, 375, 137249.

[32]. Subramani, R. Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. Journal of Mechanical Science and Technology, 2025, 1–11.

[33]. Subramani, R., Rusho, M. A., Thimothy, P., Mustafa, W. W., Ali, S. T., Hashim, R. D., ... & Kumar, A. P. Synthesis and characterization of high-performance sustainable polymers for FDM applications. Applied Chemical Engineering, 2024, 7(4).

[34]. Raja, S., Jayalakshmi, M., Rusho, M. A., Selvaraj, V. K., Subramanian, J., Yishak, S., & Kumar, T. A. Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Scientific Reports, 2024, 14(1), 30744.

[35]. Subramani, R., & Yishak, S. Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene‐Reinforced Thermoplastic Composites. Advances in Polymer Technology, 2024, 2024(1), 6464049.

[36]. Subramani, R., Ali Rusho, M., & Jia, X. Machine learning-driven sustainable optimization of rapid prototyping via FDM: Enhancing mechanical strength, energy efficiency, and SDG contributions of thermoplastic composites. Applied Chemical Engineering, 2025, 8(2), ACE-5621. https://doi.org/10.59429/ace.v8i2.5621

[37]. Raja, S., Ali, R. M., Sekhar, K. C., Jummaah, H. M., Hussain, R., Al-shammari, B. S. K., ... & Kumar, A. P. Optimization of sustainable polymer composites for surface metamorphosis in FDM processes. Applied Chemical Engineering, 2024, 7(4).

[38]. Selvaraj, V. K., Subramanian, J., Lazar, P., Raja, S., Jafferson, J. M., Jeevan, S., ... & Zachariah, A. A. An Experimental and Optimization of Bio-Based Polyurethane Foam for Low-Velocity Impact: Towards Futuristic Applications. In International Conference on Advanced Materials Manufacturing and Structures, 2024, pp. 244-261. Springer Nature Switzerland.

[39]. Subramani, R., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., ... & Kumar, A. P. Advancements in 3D printing materials: A comparative analysis of performance and applications. Applied Chemical Engineering, 2024, 3867-3867.

[40]. Selvaraj, V. K., Subramanian, J., Krishna Rajeev, P., Rajendran, V., & Raja, S. Optimization of conductive nanofillers in bio‐based polyurethane foams for ammonia‐sensing application. Polymer Engineering & Science, 2024.

[41]. Sujitha, V. S., Raja, S., Rusho, M. A., & Yishak, S. Advances and Developments in High Strength Geopolymer Concrete for Sustainable Construction–A Review. Case Studies in Construction Materials, 2025, e04669.

[42]. Sujitha, V. S. N., & Raja, S. Synergistic enhancement of geopolymer concrete using graphene oxide and nano nickel oxide: RSM‐optimized multifunctional composites for sustainable infrastructure. Structural Concrete, 2025. https://doi.org/10.1002/suco.70205

[43]. Selvaraj, V. K., Subramanian, J., Rajendran, V., Raja, S., Yuvaraj, L., Jeevan, S., ... & Zachariah, A. A. Sustainable development, optimization, and simulation of bio-based polyurethane foam composites for enhanced building acoustics. Journal of Building Engineering, 2024, 111576.

[44]. Raja, S., Praveenkumar, V., Rusho, M. A., & Yishak, S. Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach. Results in Engineering, 2024, 24, 103018.

[45]. Selvaraj, V. K., Subramanian, J., Rajendran, V., Raja, S., Yuvaraj, L., Jeevan, S., ... & Zachariah, A. A. Sustainable development, optimization, and simulation of bio-based polyurethane foam composites for enhanced building acoustics. Journal of Building Engineering, 2024, 111576.

[46]. Raja, S., Ali, R. M., Karthikeyan, S., Surakasi, R., Anand, R., Devarasu, N., & Sathish, T. Energy-efficient FDM printing of sustainable polymers: Optimization strategies for material and process performance. Applied Chemical Engineering, 2024, 7(3).



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com