Published
2025-12-31
Section
Original Research Article
License
Copyright (c) 2025 Hala Hussain Kareem, Ahmed Hussein Ahmed, Abdul_mohsen Naji Al-mohesen, Issa Mohammed Kadhim, Muntadher Abed Hussein, Nour Mohamd Rasla, Muntadher Kadhem Sultan, Duha Abed Almuhssen Muzahim , Mustafa S. Shareef

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Analytical Chemistry Evaluation of Additive-Induced Stability in Polymer FDM-AM Filaments
Hala Hussain Kareem
Department of Radiology and Ultrasound Technologies, Al-Turath University, Baghdad,10013, Iraq
Ahmed Hussein Ahmed
Medical Technical College, Al-Farahidi University, Baghdad, 10111, Iraq
Abdul_mohsen Naji Al-mohesen
Al-Hadi University College, Baghdad, 10011, Iraq
Issa Mohammed Kadhim
Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad,10015,Iraq
Muntadher Abed Hussein
Al-Manara College for Medical Sciences, Amarah, Maysan, 62001/Iraq
Nour Mohamd Rasla
Department of Medicinal Chemistry,Al-Zahrawi University College, Karbala, 56001,Iraq
Muntadher Kadhem Sultan
Department of Medicinal Chemistry,Mazaya University College, Dhi Qar,21974, Iraq.
Duha Abed Almuhssen Muzahim
Department of Medicinal Chemistry,Mazaya University College, Dhi Qar,21974, Iraq.
Mustafa S. Shareef
Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Al-Bayan University, Baghdad, Iraq.
DOI: https://doi.org/10.59429/ace.v9i1.5752
Abstract
The performance and longevity of polymer filaments in Fused Deposition Modeling Additive Manufacturing (FDM-AM) are highly dependent on their chemical and thermal stability, which can be significantly enhanced by the incorporation of functional additives. This study explores the role of stabilizers, plasticizers, nanofillers, and antioxidant agents in improving the structural integrity and printability of common polymers such as polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS). Analytical chemistry techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC), are reviewed and applied as critical tools to evaluate molecular interactions, degradation kinetics, and additive dispersion within the polymer matrix. Results highlight that additives not only suppress thermo-oxidative degradation and moisture sensitivity but also influence glass transition behavior, crystallinity, and filament rheology, ultimately leading to improved dimensional accuracy and mechanical performance in printed parts. This work provides a comprehensive framework for correlating chemical stability with processing reliability in FDM-AM, offering insights for the development of next-generation, high-performance, and durable polymer filaments tailored for sustainable and industrial applications.
References
[1]. Bandyopadhyay, A., Ciliveri, S. R., Zuckschwerdt, N., & Bose, S. Additive Manufacturing in Construction. In Additive Manufacturing (pp. 159-168). CRC Press.
[2]. Subramani, R. (2025). Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. Journal of Mechanical Science and Technology, 1-11.
[3]. Ma, W. W. S., Yang, H., Zhao, Y., Li, X., Ding, J., Qu, S., ... & Song, X. (2025). Multi‐Physical Lattice Metamaterials Enabled by Additive Manufacturing: Design Principles, Interaction Mechanisms, and Multifunctional Applications. Advanced Science, 12(8), 2405835.
[4]. Subramani Raja, Ahamed Jalaludeen Mohammad Iliyas, Paneer Selvam Vishnu, Amaladas John Rajan, Maher Ali Rusho, Mohamad Reda Refaa, Oluseye Adewale Adebimpe. Sustainable manufacturing of FDM-manufactured composite impellers using hybrid machine learning and simulation-based optimization. Materials ScienceinAdditive Manufacturing 2025, 4(3), 025200033. https://doi.org/10.36922/MSAM025200033
[5]. Subramani, R., Leon, R. R., Nageswaren, R., Rusho, M. A., & Shankar, K. V. (2025). Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review. Lubricants, 13(7), 298.
[6]. Raza, S. F., Shehzad, A., Ishfaq, K., Raza, M. T., Haider, S. M., & Mehdi, A. M. (2025). Optimizing the dynamic and static mechanical properties of 3D printed polylactic acid (PLA). The International Journal of Advanced Manufacturing Technology, 1-24.
[7]. Aarthi, S., Subramani, R., Rusho, M. A., Sharma, S., Ramachandran, T., Mahapatro, A., & Ismail, A. I. (2025). Genetically engineered 3D printed functionally graded-lignin, starch, and cellulose-derived sustainable biopolymers and composites: A critical review. International Journal of Biological Macromolecules, 145843.
[8]. Lazarus, B., Raja, S., Shanmugam, K., & Yishak, S. (2024). Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications.
[9]. Mohammed Ahmed Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, Nashrah Hani Jamadon, N. Rajeswari, Avvaru Praveen Kumar, "A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications", Advances in Polymer Technology, vol. 2023, Article ID 6344193, 9 pages, 2023. https://doi.org/10.1155/2023/6344193
[10]. Olaiya, N. G., Maraveas, C., Salem, M. A., Raja, S., Rashedi, A., Alzahrani, A. Y., El-Bahy, Z. M., & Olaiya, F. G. (2022). Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers, 14(11), 2268. https://doi.org/10.3390/polym14112268
[11]. Aufa, A. N., Hassan, M. Z., & Ilyas, R. A. (2025). Handbook of 3D Printing in Biomedical Applications. Taylor & Francis Group.
[12]. ELJIHAD, A., Ait OUCHAOUI, A., NASSRAOUI, M., & BouchaibRADIb, O. B. (2025). Optimization of 3d printing parameters for lattice structures using taguchi method. Journal of Southwest Jiaotong University, 60(1).
[13]. Raja, S., Agrawal, A. P., Patil, P. P., Thimothy, P., Capangpangan, R. Y., Singhal, P., & Wotango, M. T. (2022). Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. 2022.
[14]. Gangwar, S., Saxena, P., Biermann, T., Steinnagel, C., & Lachmayer, R. (2024). Influence of Build Height on Quality of Additively Manufactured Thermoplastic Polyurethane Parts. Advanced Engineering Materials, 26(12), 2400293.
[15]. S. Raja, A. John Rajan, "Challenges and Opportunities in Additive Manufacturing Polymer Technology: A Review Based on Optimization Perspective", Advances in Polymer Technology, vol. 2023, Article ID 8639185, 18 pages, 2023. https://doi.org/10.1155/2023/8639185
[16]. Osamah Sabah Barrak, Mahmood Mohammed Hamzah, Ali Safaa Ali, Slim Ben-Elechi, Sami Chatti, Wasaq Haider Moubder, … Arfan Ali Ahmad. (2023). Joining of Polymer to Aluminum Alloy AA1050 By Friction Spot Welding. Journal of Techniques, 5(4), 88–94. https://doi.org/10.51173/jt.v5i4.1976
[17]. S., Aarthi, S., Raja, Rusho, Maher Ali, Yishak, Simon, Bridging Plant Biotechnology and Additive Manufacturing: A Multicriteria Decision Approach for Biopolymer Development, Advances in Polymer Technology, 2025, 9685300, 24 pages, 2025. https://doi.org/10.1155/adv/9685300
[18]. Selvaraj, V. K., Subramanian, J., Krishna Rajeev, P., Rajendran, V., & Raja, S. Optimization of conductive nanofillers in bio‐based polyurethane foams for ammonia‐sensing application. Polymer Engineering & Science.
[19]. Subramani, R., & Yishak, S. (2024). Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene‐Reinforced Thermoplastic Composites. Advances in Polymer Technology, 2024(1), 6464049.
[20]. Pereira, G. G., Figueiredo, S., Fernandes, A. I., & Pinto, J. F. (2020). Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics, 12(9), 795.
[21]. Waidi, Y. O., Jain, N., Chowdhury, S., Barua, R., Das, S., Prasad, A., & Datta, S. (2024). Challenges and Perspective of Manufacturing Techniques in Biomedical Applications. In Applications of Biotribology in Biomedical Systems (pp. 433-445). Cham: Springer Nature Switzerland.
[22]. Raja, S., Jayalakshmi, M., Rusho, M. A., Selvaraj, V. K., Subramanian, J., Yishak, S., & Kumar, T. A. (2024). Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Scientific Reports, 14(1), 30744.
[23]. Theng, A. A. S., Jayamani, E., Subramanian, J., Selvaraj, V. K., Viswanath, S., Sankar, R., ... & Rusho, M. A. (2025). A review on industrial optimization approach in polymer matrix composites manufacturing. International Polymer Processing.
[24]. Raja, S., Rusho, M. A., Sekhar, K. C., Kumar, K. S., Alagarraja, K., Kumar, A. P., ... & Saravanan, N. (2024). Innovative surface engineering of sustainable polymers: Toward green and high-performance materials. Applied Chemical Engineering, 7(3).
[25]. Lei, Y., Zhao, X., Xu, L., Li, H., Liang, J., Yeoh, G. H., & Wang, W. (2024). Natural flame retardant minerals for advanced epoxy composites. Fire, 7(9), 308.
[26]. Raja, S., AhmedMustafa, M., KamilGhadir, G., MusaadAl-Tmimi, H., KhalidAlani, Z., AliRusho, M., & Rajeswari, N. (2024). An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components. Applied Chemical Engineering, 7(2), 1875-1875
[27]. Subramani, R., Vijayakumar, P., Rusho, M. A., Kumar, A., Shankar, K. V., & Thirugnanasambandam, A. K. (2024). Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers, 16(10), 1443.
[28]. Raja, S., Ali, R. M., Sekhar, K. C., Jummaah, H. M., Hussain, R., Al-shammari, B. S. K., ... & Kumar, A. P. (2024). Optimization of sustainable polymer composites for surface metamorphosis in FDM processes. Applied Chemical Engineering, 7(4).
[29]. Subramani, R., Rusho, M. A., Thimothy, P., Mustafa, W. W., Ali, S. T., Hashim, R. D., ... & Kumar, A. P. (2024). Synthesis and characterization of high-performance sustainable polymers for FDM applications. Applied Chemical Engineering, 7(4).
[30]. Raja, S., Rusho, M. A., Guru, T. S., Eldalawy, R., Hassen, A. F., Hashim, R. D., ... & Kumar, A. P. (2024). Optimizing catalytic surface coatings in FDM-Printed sustainable materials: Innovations in chemical engineering. Applied Chemical Engineering, 7(4).
[31]. Zhang, S. U. (2018). Degradation classification of 3D printing thermoplastics using Fourier transform infrared spectroscopy and artificial neural networks. Applied Sciences, 8(8), 1224.
[32]. Cerda, J. R., Arifi, T., Ayyoubi, S., Knief, P., Ballesteros, M. P., Keeble, W., ... & Serrano, D. R. (2020). Personalised 3D printed medicines: Optimising material properties for successful passive diffusion loading of filaments for fused deposition modelling of solid dosage forms. Pharmaceutics, 12(4), 345.
[33]. Subramani, R., Ali Rusho, M., & Jia, X. (2025). Machine learning-driven sustainable optimization of rapid prototyping via FDM: Enhancing mechanical strength, energy efficiency, and SDG contributions of thermoplastic composites. Applied Chemical Engineering, 8(2), ACE-5621. https://doi.org/10.59429/ace.v8i2.5621
[34]. Kaptan, A., & Kartal, F. (2024). A critical review of composite filaments for fused deposition modeling: Material properties, applications, and future directions. European Mechanical Science, 8(3), 199-209.
[35]. Daminabo, S. I. (2023). Filament fabrication and fdm 3D printing of pla/biopbs-based composite materials for advanced sustainable manufacturing applications (Doctoral dissertation, Cranfield University).
[36]. Biehl, P., & Zhang, K. (2024). Introduction to advances in bio-based polymers: chemical structures and functional properties at the interface. In Green by Design: Harnessing the power of bio-based polymers at interfaces (pp. 1-1). Bristol, UK: IOP Publishing.








