Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 9 No. 1 (2026): Publishing > Original Research Article
ACE-5753

Published

2025-12-30

Issue

Vol. 9 No. 1 (2026): Publishing

Section

Original Research Article

License

Copyright (c) 2025 Ali Raqee Abdulhadi, Aqeel Al-Hilali, Al-Dily Kareem, Hayder Hamid Abbas Al-Anbari, Salah Abdulhadi Salih, Ammar S. Al Khafaji, Sameh Hussein Hamo, Duha Abed Almuhssen Muzahim, Shurooq Sabah Hussein

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Ali Raqee Abdulhadi, Aqeel Al-Hilali, Al-Dily Kareem, Hayder Hamid Abbas Al-Anbari, Salah Abdulhadi Salih, Ammar S. Al Khafaji, … Shurooq Sabah Hussein. (2025). Quantitative Chromatographic Analysis of Volatile Compounds Released during Polymer FDM-AM. Applied Chemical Engineering, 9(1), ACE-5753. https://doi.org/10.59429/ace.v9i1.5753
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Quantitative Chromatographic Analysis of Volatile Compounds Released during Polymer FDM-AM

Ali Raqee Abdulhadi

Mechanical Engineering, Al-Turath University, Baghdad,10013, Iraq.

Aqeel Al-Hilali

Medical Technical College, Al-Farahidi University, Baghdad, Iraq.

Al-Dily Kareem

Al-Hadi University College, Baghdad, 10011, Iraq.

Hayder Hamid Abbas Al-Anbari

College of Pharmacy, Ahl Al-Bayt University, Kerbala, 13001,Iraq.

Salah Abdulhadi Salih

Department of Pharmacy, Al-Nisour University, Nisour Seq. Karkh, Baghdad,10015,Iraq.

Ammar S. Al Khafaji

Department of Medicinal Chemistry, Al-Zahrawi University College, Karbala,56001, Iraq.

Sameh Hussein Hamo

Department of Medicinal Chemistry, Mazaya University College, Dhi Qar,21974, Iraq

Duha Abed Almuhssen Muzahim

Department of Medicinal Chemistry, Mazaya University College, Dhi Qar,21974, Iraq

Shurooq Sabah Hussein

College of Health and Medical Techniques, Al-Bayan University, Baghdad, Iraq.


DOI: https://doi.org/10.59429/ace.v9i1.5753


Keywords: Volatile organic compounds (VOCs); Fused deposition modeling (FDM); Additive manufacturing (AM) ; Gas chromatography–mass spectrometry (GC–MS); Polymer emissions; Occupational safety; Indoor air quality; Process parameter optimization


Abstract

The release of volatile organic compounds (VOCs) during fused deposition modeling additive manufacturing (FDM-AM) has become a critical concern due to its implications for occupational health, indoor air quality, and material performance. In this study, a quantitative chromatographic analysis was conducted to characterize and evaluate VOC emissions from commonly used thermoplastic filaments during FDM-AM. Gas chromatography coupled with mass spectrometry (GC–MS) was employed to separate and identify volatile fractions, while flame ionization detection (FID) provided quantitative assessment of emission concentrations. Representative results revealed the presence of styrene, ethylbenzene, formaldehyde, acetaldehyde, and other low-molecular-weight aldehydes and ketones, with emission profiles varying significantly across polymer types such as ABS, PLA, and PETG. Peak intensities correlated strongly with extrusion temperature, suggesting that process parameters directly influence VOC release. Comparative analysis indicated that ABS exhibited the highest emission intensity, dominated by aromatic hydrocarbons, while PLA produced lower total VOCs but higher proportions of lactide-derived species. The findings underscore the necessity of systematic monitoring of VOCs in FDM-AM environments and provide quantitative evidence for optimizing process conditions and implementing adequate ventilation systems. This work establishes a framework for linking chromatographic signatures of volatile compounds with material choice and processing parameters, contributing to safer and more sustainable additive manufacturing practices.


References

[1]. Min, K., Li, Y., Wang, D., Chen, B., Ma, M., Hu, L., ... & Jiang, G. (2021). 3D printing-induced fine particle and volatile organic compound emission: An emerging health risk. Environmental science & technology letters, 8(8), 616-625.

[2]. Subramani, R., Vijayakumar, P., Rusho, M. A., Kumar, A., Shankar, K. V., & Thirugnanasambandam, A. K. (2024). Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers, 16(10), 1443.

[3]. Theng, A. A. S., Jayamani, E., Subramanian, J., Selvaraj, V. K., Viswanath, S., Sankar, R., ... & Rusho, M. A. (2025). A review on industrial optimization approach in polymer matrix composites manufacturing. International Polymer Processing.

[4]. S., Aarthi, S., Raja, Rusho, Maher Ali, Yishak, Simon, Bridging Plant Biotechnology and Additive Manufacturing: A Multicriteria Decision Approach for Biopolymer Development, Advances in Polymer Technology, 2025, 9685300, 24 pages, 2025. https://doi.org/10.1155/adv/9685300

[5]. Subramani, R. (2025). Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. Journal of Mechanical Science and Technology, 1-11.

[6]. Raja, S., Jayalakshmi, M., Rusho, M. A., Selvaraj, V. K., Subramanian, J., Yishak, S., & Kumar, T. A. (2024). Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Scientific Reports, 14(1), 30744.

[7]. Aarthi, S., Subramani, R., Rusho, M. A., Sharma, S., Ramachandran, T., Mahapatro, A., & Ismail, A. I. (2025). Genetically engineered 3D printed functionally graded-lignin, starch, and cellulose-derived sustainable biopolymers and composites: A critical review. International Journal of Biological Macromolecules, 145843.

[8]. Raja, S., AhmedMustafa, M., KamilGhadir, G., MusaadAl-Tmimi, H., KhalidAlani, Z., AliRusho, M., & Rajeswari, N. (2024). An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components. Applied Chemical Engineering, 7(2), 1875-1875.

[9]. Subramani, R., Kalidass, A. K., Muneeswaran, M. D., & Lakshmipathi, B. G. (2024). Effect of fused deposition modeling process parameter in influence of mechanical property of acrylonitrile butadiene styrene polymer. Applied Chemical Engineering, 7(1).

[10]. Mohammadian, Y., & Nasirzadeh, N. (2021). Toxicity risks of occupational exposure in 3D printing and bioprinting industries: a systematic review. Toxicology and Industrial Health, 37(9), 573-584.

[11]. Saliakas, S., Karayannis, P., Kokkinopoulos, I., Damilos, S., Gkartzou, E., Zouboulis, P., ... & Koumoulos, E. P. (2022). Fused filament fabrication 3D printing: Quantification of exposure to airborne particles. Journal of Composites Science, 6(5), 119.

[12]. Salimbeni, S. (2023). Assessing the Role of Advanced 3D Construction Printing in Alleviating Chronic Respiratory Diseases among Construction Personnel. International Journal of Engineering Energy and Electronics (IJEEE), 1(1), 14-23.

[13]. Karayannis, P., Saliakas, S., Kokkinopoulos, I., Damilos, S., Koumoulos, E. P., Gkartzou, E., ... & Charitidis, C. (2022). Facilitating safe FFF 3D printing: a prototype material case study. Sustainability, 14(5), 3046.

[14]. Sampath, T., Shanmugam, P. S. T., Thamizharasan, S., & Suresha, K. R. (2025). safety and Toxicity of 3D Printed Medical Products. In Compendium of 3D Bioprinting Technology (pp. 221-237). CRC Press.

[15]. Lazarus, B., Raja, S., Shanmugam, K., & Yishak, S. (2024). Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications.

[16]. Mohammed Ahmed Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, Nashrah Hani Jamadon, N. Rajeswari, Avvaru Praveen Kumar, "A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications", Advances in Polymer Technology, vol. 2023, Article ID 6344193, 9 pages, 2023. https://doi.org/10.1155/2023/6344193

[17]. Osamah Sabah Barrak, Mahmood Mohammed Hamzah, Ali Safaa Ali, Slim Ben-Elechi, Sami Chatti, Wasaq Haider Moubder, … Arfan Ali Ahmad. (2023). Joining of Polymer to Aluminum Alloy AA1050 By Friction Spot Welding. Journal of Techniques, 5(4), 88–94. https://doi.org/10.51173/jt.v5i4.1976

[18]. Praveenkumar, V., Raja, S., Jamadon, N. H., & Yishak, S. (2023). Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207231212566

[19]. Zhao, Y., & Zhao, B. (2018, October). Emissions of air pollutants from Chinese cooking: A literature review. In Building simulation (Vol. 11, No. 5, pp. 977-995). Berlin/Heidelberg: Springer Berlin Heidelberg.

[20]. Szechyńska-Hebda, M., Hebda, M., Doğan-Sağlamtimur, N., & Lin, W. T. (2024). Let’s Print an Ecology in 3D (and 4D). Materials, 17(10), 2194.

[21]. Pandit, S., Singh, P., Sinha, M., & Parthasarathi, R. (2021). Integrated QSAR and adverse outcome pathway analysis of chemicals released on 3D printing using acrylonitrile butadiene styrene. Chemical Research in Toxicology, 34(2), 355-364.

[22]. Kuo, R. F., Lin, Y. S., Yang, T. H., & Nguyen, A. T. (2022). 3D printing: limitations, safety, and regulatory considerations for oral health science. In 3D Printing in Oral Health Science: Applications and Future Directions (pp. 269-291). Cham: Springer International Publishing.

[23]. Damilos, S., Semitekolos, D., Saliakas, S., Kostapanou, A., Charitidis, C., & Koumoulos, E. P. (2025). Occupational Risk Assessment During Carbon Fibre Sizing Using Engineered Nanomaterials. Safety, 11(1), 11.

[24]. Raja, S., Praveenkumar, V., Rusho, M. A., & Yishak, S. (2024). Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach. Results in Engineering, 24, 103018.

[25]. Chen, B. T., Duling, M. G., Ham, J., Johnson, A. R., Lawrence, R. B., LeBouf, R. F., ... & Yi, J. (2017). Characterization of Chemical Contaminants Generated by a Desktop Fused Deposition Modeling 3-Dimensional Printer.

[26]. Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., & de Gouw, J. A. (2017). Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chemical reviews, 117(21), 13187-13229.

[27]. Zhan, X., Duan, J., & Duan, Y. (2013). Recent developments of proton‐transfer reaction mass spectrometry (PTR‐MS) and its applications in medical research. Mass spectrometry reviews, 32(2), 143-165.

[28]. Raja, S., Ali, R. M., Babar, Y. V., Surakasi, R., Karthikeyan, S., Panneerselvam, B., & Jagadheeswari, A. S. (2024). Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches. Applied Chemical Engineering, 7(3).

[29]. Raja, S., Ali, R. M., Karthikeyan, S., Surakasi, R., Anand, R., Devarasu, N., & Sathish, T. (2024). Energy-efficient FDM printing of sustainable polymers: Optimization strategies for material and process performance. Applied Chemical Engineering, 7(3).

[30]. Raja, S., Rusho, M. A., Sekhar, K. C., Kumar, K. S., Alagarraja, K., Kumar, A. P., ... & Saravanan, N. (2024). Innovative surface engineering of sustainable polymers: Toward green and high-performance materials. Applied Chemical Engineering, 7(3).

[31]. Raja, S., Rusho, M. A., Singh, C., Khalaf, A. M., Ismael, S. H., Qader, E. A. A., ... & Kumar, A. P. (2024). Surface functionalization of bio-based polymers in FDM: A pathway to enhanced material performance. Applied Chemical Engineering, 7(3).

[32]. Sathies, T., Senthil, P., & Anoop, M. S. (2020). A review on advancements in applications of fused deposition modelling process. Rapid Prototyping Journal, 26(4), 669-687.

[33]. Subramani, R., Ali, R. M., Surakasi, R., Sudha, D. R., Karthick, S., Karthikeyan, S., ... & Selvaraj, V. K. (2024). Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact. Applied Chemical Engineering, 7(3), 11-11.

[34]. Raja, S., Ali, R. M., Sekhar, K. C., Jummaah, H. M., Hussain, R., Al-shammari, B. S. K., ... & Kumar, A. P. (2024). Optimization of sustainable polymer composites for surface metamorphosis in FDM processes. Applied Chemical Engineering, 7(4).

[35]. Potter, P. M., Al-Abed, S. R., Hasan, F., & Lomnicki, S. M. (2021). Influence of polymer additives on gas-phase emissions from 3D printer filaments. Chemosphere, 279, 130543.

[36]. Galeja, M., Wypiór, K., Wachowicz, J., Kędzierski, P., Hejna, A., Marć, M., ... & Swinarew, A. S. (2020). POM/EVA blends with future utility in fused deposition modeling. Materials, 13(13), 2912.

[37]. Rizzarelli, P., & Carroccio, S. (2015). Role of mass spectrometry in the elucidation of thermal degradation mechanisms in polymeric materials. Reactions and mechanisms in thermal analysis of advanced materials, 10, 221-251.

[38]. Subramani Raja, Ahamed Jalaludeen Mohammad Iliyas, Paneer Selvam Vishnu, Amaladas John Rajan, Maher Ali Rusho, Mohamad Reda Refaa, Oluseye Adewale Adebimpe. Sustainable manufacturing of FDM-manufactured composite impellers using hybrid machine learning and simulation-based optimization. Materials ScienceinAdditive Manufacturing 2025, 4(3), 025200033. https://doi.org/10.36922/MSAM025200033

[39]. Subramani, R., Leon, R. R., Nageswaren, R., Rusho, M. A., & Shankar, K. V. (2025). Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review. Lubricants, 13(7), 298.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com