Published
2025-12-11
Issue
Section
Original Research Article
License
Copyright (c) 2025 mai ail salam1, Mohammed Fadhil Abbood , Sarah salam Ali, Hayder Hamid Abbas Al-Anbari, Muntadher Abed Hussein, Fakhri Alajeeli, Ameer Hassan Idan, Hayder Abdulhasan Hammoodi , Sanan Thaer Abdalwahab

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
XPS-Based Chemical Mapping of Interfacial Bonding in FDM-AM Polymer Surfaces
Smai ail salam
Department of Analytics Laboratories, Al-Farahidi University, Baghdad, 10111,Iraq
Mohammed Fadhil Abbood
Legal Affairs Department, Iraqia University,Baghdad,10111,Iraq
Sarah salam Ali
Department of Analytics Laboratories, Al-Farahidi University, Baghdad, 10111,Iraq
Hayder Hamid Abbas Al-Anbari
College of Pharmacy, Ahl Al-Bayt University, Kerbala,13004, Iraq
Muntadher Abed Hussein
Al-Manara College For Medical Sciences,University of Manara, Amarah, Maysan, 62001,Iraq
Fakhri Alajeeli
Department of Medicinal Chemistry, Al-Hadi University College, Baghdad, 10011, Iraq
Ameer Hassan Idan
Department of Medicinal Chemistry, Al-Zahrawi University College, Karbala,56001, Iraq
Hayder Abdulhasan Hammoodi
Department of Dentistry, Mazaya University College, Dhi Qar,21974, Iraq
Sanan Thaer Abdalwahab
Microbiology, Clinical Immunology, Al-Turath University, Baghdad, 10013, Iraq
DOI: https://doi.org/10.59429/ace.v8i4.5755
Keywords: X-ray Photoelectron Spectroscopy (XPS); Fused Deposition Modeling (FDM); Additive Manufacturing (AM); Polymer Interfaces; Interfacial Bonding; Surface Chemistry; Chemical Mapping; Layer Adhesion
Abstract
Fused Deposition Modeling (FDM), a widely adopted additive manufacturing (AM) process for polymers, often suffers from weak interfacial bonding between printed layers, which limits the mechanical reliability of fabricated components. In this work, X-ray Photoelectron Spectroscopy (XPS) was employed as a surface-sensitive analytical technique to chemically map the interfacial regions of FDM-processed polymer specimens. By correlating elemental distributions and chemical states with print-layer orientation, the study reveals distinct interfacial bonding characteristics that govern adhesion at the microscale. High-resolution chemical mapping demonstrates the presence of oxidative species, chain scission fragments, and thermally induced chemical rearrangements localized at interlayer boundaries. These findings provide new insights into the chemical origin of bonding heterogeneity in FDM-AM polymers and highlight XPS as a powerful diagnostic tool for guiding surface modification strategies to enhance interfacial adhesion. The approach establishes a framework for linking interfacial chemistry to mechanical performance, ultimately advancing the design of more reliable polymer-based additive manufacturing applications.
References
[1]. Praveenkumar, V., Raja, S., Jamadon, N. H., & Yishak, S. (2023). Role of laser power and scan speed combination on the surface quality of additive manufactured nickel-based superalloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 14644207231212566.
[2]. Subramani, R. (2025). Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. Journal of Mechanical Science and Technology, 1-11.
[3]. Raja, S., Murali, A. P., & Praveenkumar, V. (2024). Tailored microstructure control in Additive Manufacturing: Constant and varying energy density approach for nickel 625 superalloy. Materials Letters, 375, 137249.
[4]. Plamadiala, I., Croitoru, C., Pop, M. A., & Roata, I. C. (2025). Enhancing polylactic acid (PLA) performance: A review of additives in fused deposition modelling (FDM) filaments. Polymers, 17(2), 191.
[5]. S. Raja, A. John Rajan, "Challenges and Opportunities in Additive Manufacturing Polymer Technology: A Review Based on Optimization Perspective", Advances in Polymer Technology, vol. 2023, Article ID 8639185, 18 pages, 2023. https://doi.org/10.1155/2023/8639185
[6]. S., R., & A., J. R. (2023). Selection of Polymer Extrusion Parameters By Factorial Experimental Design – A Decision Making Model. Scientia Iranica, (), -. doi: 10.24200/sci.2023.60096.6591
[7]. S., Aarthi, S., Raja, Rusho, Maher Ali, Yishak, Simon, Bridging Plant Biotechnology and Additive Manufacturing: A Multicriteria Decision Approach for Biopolymer Development, Advances in Polymer Technology, 2025, 9685300, 24 pages, 2025. https://doi.org/10.1155/adv/9685300
[8]. Subramani, R., Vijayakumar, P., Rusho, M. A., Kumar, A., Shankar, K. V., & Thirugnanasambandam, A. K. (2024). Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers, 16(10), 1443.
[9]. Subramani, R., & Yishak, S. (2024). Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene‐Reinforced Thermoplastic Composites. Advances in Polymer Technology, 2024(1), 6464049.
[10]. Raja, S., Mustafa, M. A., Ghadir, G. K., Al-Tmimi, H. M., Alani, Z. K., Rusho, M. A., & Rajeswari, N. (2024). Unlocking the potential of polymer 3D printed electronics: Challenges and solutions. Applied Chemical Engineering, 7(2), 3877-3877.
[11]. Raja, S., Agrawal, A. P., Patil, P. P., Thimothy, P., Capangpangan, R. Y., Singhal, P., & Wotango, M. T. (2022). Optimization of 3D Printing Process Parameters of Polylactic Acid Filament Based on the Mechanical Test. 2022.
[12]. Aarthi, S., Subramani, R., Rusho, M. A., Sharma, S., Ramachandran, T., Mahapatro, A., & Ismail, A. I. (2025). Genetically engineered 3D printed functionally graded-lignin, starch, and cellulose-derived sustainable biopolymers and composites: A critical review. International Journal of Biological Macromolecules, 145843.
[13]. Lazarus, B., Raja, S., Shanmugam, K., & Yishak, S. (2024). Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications.
[14]. Mohammed Ahmed Mustafa, S. Raja, Layth Abdulrasool A. L. Asadi, Nashrah Hani Jamadon, N. Rajeswari, Avvaru Praveen Kumar, "A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications", Advances in Polymer Technology, vol. 2023, Article ID 6344193, 9 pages, 2023. https://doi.org/10.1155/2023/6344193
[15]. Olaiya, N. G., Maraveas, C., Salem, M. A., Raja, S., Rashedi, A., Alzahrani, A. Y., El-Bahy, Z. M., & Olaiya, F. G. (2022). Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers, 14(11), 2268. https://doi.org/10.3390/polym14112268
[16]. Raja, S., Jayalakshmi, M., Rusho, M. A., Selvaraj, V. K., Subramanian, J., Yishak, S., & Kumar, T. A. (2024). Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Scientific Reports, 14(1), 30744.
[17]. Gupta, D., Singh, M., Malviya, R., & Sundram, S. (Eds.). (2025). Soft Materials-Based Biosensing Medical Applications. John Wiley & Sons.
[18]. Theng, A. A. S., Jayamani, E., Subramanian, J., Selvaraj, V. K., Viswanath, S., Sankar, R., ... & Rusho, M. A. (2025). A review on industrial optimization approach in polymer matrix composites manufacturing. International Polymer Processing.
[19]. Subramani, R., Ali, R. M., Surakasi, R., Sudha, D. R., Karthick, S., Karthikeyan, S., ... & Selvaraj, V. K. (2024). Surface metamorphosis techniques for sustainable polymers: Optimizing material performance and environmental impact. Applied Chemical Engineering, 7(3), 11-11.
[20]. Raja, S., Ali, R. M., Sekhar, K. C., Jummaah, H. M., Hussain, R., Al-shammari, B. S. K., ... & Kumar, A. P. (2024). Optimization of sustainable polymer composites for surface metamorphosis in FDM processes. Applied Chemical Engineering, 7(4).
[21]. Zhou, T., Fan, C., Yang, Y., & Rao, Z. (2025). Coarse-grained molecular dynamics simulations of interdiffusion and thermomechanical properties at the interface of laser powder bed fusion processed thermoplastics. International Journal of Heat and Mass Transfer, 245, 126990.
[22]. Gao, Y., Jayswal, A., Carrillo, J. M., Damron, J. T., Kearney, L. T., Bowland, C., ... & Naskar, A. K. (2025). Enhanced Interfacial Bonding of Branched Polymers.
[23]. Raja, S., AhmedMustafa, M., KamilGhadir, G., MusaadAl-Tmimi, H., KhalidAlani, Z., AliRusho, M., & Rajeswari, N. (2024). An analysis of polymer material selection and design optimization to improve Structural Integrity in 3D printed aerospace components. Applied Chemical Engineering, 7(2), 1875-1875.
[24]. Rao, Y., Yu, X., Wei, N., Yao, S., & Wang, K. (2025). A multi-scale model for interlayer fracture behavior of FDM-printed short fiber reinforced polymers. Mechanics of Advanced Materials and Structures, 1-11.
[25]. Teimoori, A., Nabavi‐Kivi, A., Choupani, N., & Ayatollahi, M. R. (2025). Investigating the Fracture Performance of the FDM‐ABS Specimens for Low‐Temperature Applications. Fatigue & Fracture of Engineering Materials & Structures.
[26]. Altuntas, U., Coker, D., & Yavas, D. (2025, May). Quantification of Cohesive Properties in Bioinspired Interfaces of 3D-Printed Heterogeneous Materials. In ASME Aerospace Structures, Structural Dynamics, and Materials Conference (Vol. 88759, p. V001T03A006). American Society of Mechanical Engineers.
[27]. Tataru, G., Arias Blanco, A., & Esteban, M. (2025). Effect of EB-radiation on 3D-printed materials: the contrasting behaviors of poly (lactic acid) modeled by FDM and acrylate networks produced by SLA (No. IAEA-CN-332/432).
[28]. Raja, S., Ali, R. M., Babar, Y. V., Surakasi, R., Karthikeyan, S., Panneerselvam, B., & Jagadheeswari, A. S. (2024). Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches. Applied Chemical Engineering, 7(3).
[29]. Subramani, R., Rusho, M. A., Sekhar, K. C., Mohammed, S. A., Abdulah, S. A., Hashim, R. D., ... & Kumar, A. P. (2024). Utilizing bio-energy and waste reduction techniques in FDM: Toward sustainable production practices. Applied Chemical Engineering, 7(4).
[30]. Selvaraj, V. K., Subramanian, J., Lazar, P., Raja, S., Jafferson, J. M., Jeevan, S., ... & Zachariah, A. A. (2024, February). An Experimental and Optimization of Bio-Based Polyurethane Foam for Low-Velocity Impact: Towards Futuristic Applications. In International Conference on Advanced Materials Manufacturing and Structures (pp. 244-261). Cham: Springer Nature Switzerland.
[31]. Subramani, R., Leon, R. R., Nageswaren, R., Rusho, M. A., & Shankar, K. V. (2025). Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review. Lubricants, 13(7), 298.
[32]. Khan, J., & Yadav, S. (2025). Analytical Tools for Multifunctional Materials. Multifunctional Materials: Engineering and Biological Applications, 335-364.
[33]. Mozgova, O., Chernyayeva, O., Sroka-Bartnicka, A., Pieta, P., Nowakowski, R., & S. Pieta, I. (2025). Physicochemical Characterization of Biodegradable Polymers for Biomedical Applications: Insights from XPS, DRIFT, and AFM Techniques. Journal of Polymers and the Environment, 1-35.
[34]. Fatkullin, M., Petrov, I., Dogadina, E., Kogolev, D., Vorobiev, A., Postnikov, P., ... & Sheremet, E. (2025). Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics. Polymers, 17(2), 192.
[35]. Machín, A., & Márquez, F. (2025). Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications.
[36]. Sharma, D., & Le Ferrand, H. (2025). 3D printed gyroid scaffolds enabling strong and thermally insulating mycelium-bound composites for greener infrastructures. Nature Communications, 16(1), 5775.
[37]. Morikwe, U., Pope, T., & Zablon, F. (2025). GSA NCA&T 3rd Graduate Research Symposium: Book of Abstracts (April 1, 2025).
[38]. Cuiffo, M. A., Snyder, J., Elliott, A. M., Romero, N., Kannan, S., & Halada, G. P. (2017). Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Applied Sciences, 7(6), 579.
[39]. Zhang, S., Rehman, M. Z. U., Bhagia, S., Meng, X., Meyer III, H. M., Wang, H., ... & Ragauskas, A. J. (2022). Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing. Journal of Materials Science, 57(22), 10141-10152.
[40]. Kausar, A. (2018). A review of filled and pristine polycarbonate blends and their applications. Journal of Plastic Film & Sheeting, 34(1), 60-97.
[41]. Vikneswaran, S. K., Nagarajan, P., Dinesh, S. K., Kumar, K. S., & Megalingam, A. (2022). Investigation of the tensile behaviour of polylactic acid, acrylonitrile butadiene styrene, and polyethylene terephthalate glycol materials. Materials Today: Proceedings, 66, 1093-1098.
[42]. Khan, I., Tariq, M., Abas, M., Shakeel, M., Hira, F., Al Rashid, A., & Koç, M. (2023). Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication. Composites Part C: Open Access, 12, 100392.








