Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 3(Published) > Original Research Article
ACE-5756

Published

2025-09-18

Issue

Vol. 8 No. 3(Published)

Section

Original Research Article

License

Copyright (c) 2025 Parimal S. Bhambare, Anant Kaulage, Milind Manikrao Darade, Govindarajan Murali, Swati Mukesh Dixit, P. S. N. Masthan Vali, Sukhadip Mhankali Chougule, Anant Sidhappa Kurhade, Chaitalee Naresh Mali

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Parimal S. Bhambare, Anant Kaulage, Milind Manikrao Darade, Govindarajan Murali, Swati Mukesh Dixit, P. S. N. Masthan Vali, … Chaitalee Naresh Mali. (2025). Artificial intelligence for sustainable environmental management in the mining sector: A review. Applied Chemical Engineering, 8(3), ACE-5756. https://doi.org/10.59429/ace.v8i3.5756
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Artificial intelligence for sustainable environmental management in the mining sector: A review

Parimal S. Bhambare

Department of Mechanical Engineering, MIT-WPU University, Kothrud, Pune – 411038, Maharashtra, India

Anant Kaulage

Department of Computer Engineering, MIT Art, Design and Technology University,Loni Kalbhor, Pune – 412201, Maharashtra ,India

Milind Manikrao Darade

Civil Engineering Department, Anantrao Pawar College of Engineering and Research, Parvati, Pune - 411009, Maharashtra, India

Govindarajan Murali

Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur (Dt) - 522502, Andhra Pradesh, India

Swati Mukesh Dixit

Department of Electronics and Telecommunication Engineering, Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, 411018, Maharashtra, India; School of Technology and Research, Dr. D. Y. Patil Dnyan Prasad University, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India

P. S. N. Masthan Vali

Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur (Dt) - 522502, Andhra Pradesh, India

Sukhadip Mhankali Chougule

Department of Mechanical Engineering, PCET’s Pimpri Chinchwad College of Engineering and Research, Ravet, Pune - 412101, Maharashtra, India

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India ; School of Technology and Research, Dr. D. Y. Patil Dnyan Prasad University, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India

Chaitalee Naresh Mali

Department of Industrial Chemistry, AISSM’s Institute of Information Technology, Pune, 411001, Maharashtra, India


DOI: https://doi.org/10.59429/ace.v8i3.5756


Keywords: Artificial intelligence; mining sector; environmental sustainability; predictive analytics; machine learning; tailings management; digital twins; emission monitoring


Abstract

Importance: The mining industry must balance global resource demand with the urgent need to reduce environmental impacts such as air pollution, water contamination, soil degradation, and greenhouse gas emissions. Artificial Intelligence (AI) offers powerful tools to support sustainable practices by enabling predictive analytics, monitoring, and optimization. Research Gap: While AI’s potential for sustainability is recognized, existing research rarely provides systematic analysis of its specific applications in mining. Gaps remain in evaluating performance benchmarks, addressing integration challenges, and considering ethical and regulatory issues. Objective: This review examines AI applications in mining with a focus on their role in mitigating environmental impacts, identifying both opportunities and limitations in advancing sustainable operations. Methodology: The study synthesizes peer-reviewed literature and case studies, covering AI use in air quality monitoring, water resource management, soil restoration, tailings stability, energy optimization, digital twins, and ecosystem modelling. Key Findings: AI systems have achieved notable results, including >90% accuracy in slope stability prediction, 25% reduction in wastewater treatment costs, and 8–12% fuel savings through reinforcement learning. Persistent barriers include data scarcity, high computational energy demands, integration with legacy systems, and limited interpretability of deep learning models. Implications: This review highlights AI’s potential to significantly reduce the environmental footprint of mining if implemented responsibly. Approaches such as explainable AI, federated learning, and energy-efficient frameworks are essential to ensure transparency, scalability, and sustainable long-term adoption


References

[1]. Nishant R, Kennedy M, Corbett J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int J Inf Manage. 2020 Apr 20;53:102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104

[2]. Akter MostS. Harnessing Technology for Environmental Sustainability: Utilizing AI to Tackle Global Ecological Challenge. Deleted J. 2024 Feb 16;2(1):61. https://doi.org/10.60087/jaigs.v2i1.97

[3]. Yadav M, Singh G. Environmental sustainability with artificial intelligence. EPRA Int J Multidiscip Res (IJMR). 2023 May 24;213. https://doi.org/10.36713/epra13325

[4]. Regona M, Yiğitcanlar T, Hon CKH, Teo M. Artificial intelligence and sustainable development goals: Systematic literature review of the construction industry. Sustain Cities Soc. 2024 May 4;108:105499. https://doi.org/10.1016/j.scs.2024.105499

[5]. Siqueira MB, Santos VM dos, Diniz EH, Cruz APA. Artificial intelligence for sustainability: A systematic literature review in information systems. Rev Gestão Soc Ambient. 2024 Jul 5;18(3). https://doi.org/10.24857/rgsa.v18n3-178

[6]. Năstasă A, Dumitra TC, Grigorescu A. Artificial intelligence and sustainable development during the pandemic: An overview of the scientific debates. Heliyon. 2024 Apr 26;10(9). https://doi.org/10.1016/j.heliyon.2024.e30412

[7]. Pimenow S, Pimenowa O, Prus P, Niklas A. The impact of artificial intelligence on the sustainability of regional ecosystems: Current challenges and future prospects. Sustainability. 2025 May 23;17(11):4795. https://doi.org/10.3390/su17114795

[8]. Tripathi S, Bachmann N, Brunner M, Rizk Z, Jodlbauer H. Assessing the current landscape of AI and sustainability literature: Identifying key trends, addressing gaps and challenges. J Big Data. 2024 May 6;11(1). https://doi.org/10.1186/s40537-024-00912-x

[9]. Heilinger J, Kempt H, Nagel SK. Beware of sustainable AI! Uses and abuses of a worthy goal. AI Ethics. 2023 Feb 2;4(2):201. https://doi.org/10.1007/s43681-023-00259-8

[10]. OECD. Measuring the environmental impacts of artificial intelligence compute and applications. OECD Digit Econ Pap. 2022 Nov. https://doi.org/10.1787/7babf571-en

[11]. Rane N. Role of ChatGPT and similar generative artificial intelligence (AI) in construction industry. SSRN Electron J. 2023 Jan 1. https://doi.org/10.2139/ssrn.4598258

[12]. El-Helaly M. Artificial intelligence and occupational health and safety, benefits and drawbacks. La Medicina del Lavoro. 2024 Apr 24;115(2). https://doi.org/10.23749/mdl.v115i2.15835

[13]. Biazar SM, Golmohammadi G, Nedhunuri RR, Shaghaghi S, Mohammadi K. Artificial intelligence in hydrology: Advancements in soil, water resource management, and sustainable development. Sustainability. 2025 Mar 5;17(5):2250. https://doi.org/10.3390/su17052250

[14]. Popescu SM, Mansoor S, Wani OA, Kumar SS, Sharma V, Sharma A, Arya VM, Kirkham MB, Hou D, Bolan N, Chung YS. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Front Environ Sci. 2024 Feb 20;12. https://doi.org/10.3389/fenvs.2024.1336088

[15]. Chakraborty S. Towards a comprehensive assessment of AI’s environmental impact. arXiv. 2024 May 22. http://arxiv.org/abs/2405.14004

[16]. Binetti MS, Uricchio VF, Massarelli C. Isolation forest for environmental monitoring: A data-driven approach to land management. Environments. 2025 Apr 10;12(4):116. https://doi.org/10.3390/environments12040116

[17]. Feng F, Ghorbani H, Radwan AE. Predicting groundwater level using traditional and deep machine learning algorithms. Front Environ Sci. 2024 Feb 16;12. https://doi.org/10.3389/fenvs.2024.1291327

[18]. Ghahramani M, Zhou M, Mölter A, Pilla F. IoT-based route recommendation for an intelligent waste management system. IEEE Internet Things J. 2021 Dec 2;9(14):11883. https://doi.org/10.1109/jiot.2021.3132126

[19]. Sharma P, Vaid U. Emerging role of artificial intelligence in waste management practices. IOP Conf Ser Earth Environ Sci. 2021 Nov 1;889(1):12047. https://doi.org/10.1088/1755-1315/889/1/012047

[20]. Nwokediegwu ZQS, Ugwuanyi ED, Dada MA, Majemite MT, Obaigbena A. AI-driven waste management systems: A comparative review of innovations in the USA and Africa. Eng Sci Technol J. 2024 Feb 25;5(2):507. https://doi.org/10.51594/estj.v5i2.828

[21]. Williamson HF, Brettschneider J, Cáccamo M, Davey R, Goble C, Kersey P, et al. Data management challenges for artificial intelligence in plant and agricultural research. F1000Research. 2021 Apr 27;10:324. https://doi.org/10.12688/f1000research.52204.1

[22]. Awais M, Naqvi SMZA, Zhang H, Li L, Zhang W, Awwad FA, et al. AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. Bioresour Bioprocess. 2023 Dec 7;10(1). https://doi.org/10.1186/s40643-023-00710-y

[23]. Roberts H, Zhang J, Bariach B, Cowls J, Gilburt B, Juneja P, et al. Artificial intelligence in support of the circular economy: Ethical considerations and a path forward. AI Soc. 2022 Nov 28;39(3):1451. https://doi.org/10.1007/s00146-022-01596-8

[24]. Olawade DB, Wada OZ, David-Olawade AC, Fapohunda O, Ige AO, Ling J. Artificial intelligence potential for net zero sustainability: Current evidence and prospects. Next Sustainability. 2024 Jan 1;4:100041. https://doi.org/10.1016/j.nxsust.2024.100041

[25]. Jin D, Ocone R, Jiao K, Xuan J. Energy and AI. Energy AI. 2020 Apr 20;1:100002. https://doi.org/10.1016/j.egyai.2020.100002

[26]. Alghieth M. Sustain AI: A multi-modal deep learning framework for carbon footprint reduction in industrial manufacturing. Sustainability. 2025 May 2;17(9):4134. https://doi.org/10.3390/su17094134

[27]. Waltersmann L, Kiemel S, Stuhlsatz J, Sauer A, Miehe R. Artificial intelligence applications for increasing resource efficiency in manufacturing companies—A comprehensive review. Sustainability. 2021 Jun 12;13(12):6689. https://doi.org/10.3390/su13126689

[28]. Pachot A, Patissier C. Towards sustainable artificial intelligence: An overview of environmental protection uses and issues. Green Low-Carbon Econ. 2023 Feb 21. https://doi.org/10.47852/bonviewglce3202608

[29]. Antonopoulos I, Robu V, Couraud B, Kirli D, Norbu S, Kiprakis A, et al. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew Sustain Energy Rev. 2020 Jun 10;130:109899. https://doi.org/10.1016/j.rser.2020.109899

[30]. Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, et al. Artificial intelligence in sustainable energy industry: Status quo, challenges and opportunities. J Clean Prod. 2021 Jan 9;289:125834. https://doi.org/10.1016/j.jclepro.2021.125834

[31]. Balamurugan M, Narayanan K, Raghu N, GB AK, Trupti VN. Role of artificial intelligence in smart grid: A mini review. Front Artif Intell. 2025 Feb 4;8. https://doi.org/10.3389/frai.2025.1551661

[32]. Xie L, Huang T, Zheng X, Liu Y, Wang M, Vittal V, et al. Energy system digitization in the era of AI: A three-layered approach towards carbon neutrality. arXiv. 2022 Jan 1. https://arxiv.org/abs/2211.04584

[33]. Arévalo P, Jurado F. Impact of artificial intelligence on the planning and operation of distributed energy systems in smart grids. Energies. 2024 Sep 8;17(17):4501. https://doi.org/10.3390/en17174501

[34]. Alsaigh R, Mehmood R, Katib I. AI explainability and governance in smart energy systems: A review. Front Energy Res. 2023 Jan 27;11. https://doi.org/10.3389/fenrg.2023.1071291

[35]. Judge MA, Franzitta V, Curto D, Guercio A, Cirrincione G, Khattak HA. A comprehensive review of artificial intelligence approaches for smart grid integration and optimization. Energy Convers Manag X. 2024 Oct 1;24:100724. https://doi.org/10.1016/j.ecmx.2024.100724

[36]. Omitaomu OA, Niu H. Artificial intelligence techniques in smart grid: A survey. Smart Cities. 2021 Apr 22;4(2):548. https://doi.org/10.3390/smartcities4020029

[37]. Chaudhari BP, Kabade S. AI-driven cloud services for guaranteed disaster recovery, improved fault tolerance, and transparent high availability in dynamic cloud systems. Int J Sci Res Sci Eng Technol. 2023 Nov 23;:437. https://doi.org/10.32628/ijsrset25122169

[38]. Gowekar GS. Artificial intelligence for predictive maintenance in oil and gas operations. World J Adv Res Rev. 2024 Sep 14;23(3):1228. https://doi.org/10.30574/wjarr.2024.23.3.2721

[39]. Shiboldenkov VA, Nesterova K. The smart technologies application for the product life-cycle management in modern manufacturing systems. MATEC Web Conf. 2020;311:02020. https://doi.org/10.1051/matecconf/202031102020

[40]. Abbas A. AI for predictive maintenance in industrial systems. 2024 Jan 28. https://doi.org/10.31219/osf.io/vq8zg

[41]. Kuang L, Liu H, Ren Y, Luo K, Shi M, Su J, et al. Application and development trend of artificial intelligence in petroleum exploration and development. Pet Explor Dev. 2021 Feb 1;48(1):1. https://doi.org/10.1016/S1876-3804(21)60001-0

[42]. Li JX, Zhang T, Zhu Y, Chen Z. Artificial general intelligence (AGI) for the oil and gas industry: A review. arXiv. 2024 Jun 1. https://arxiv.org/abs/2406.00594

[43]. Chen F, Sun L, Jian S, Huo X, Pan X, Feng C, et al. A review of AI applications in unconventional oil and gas exploration and development. Energies. 2025 Jan 17;18(2):391. https://doi.org/10.3390/en18020391

[44]. Waqar A, Othman I, Shafiq N, Mansoor MS. Applications of AI in oil and gas projects towards sustainable development: A systematic literature review. Artif Intell Rev. 2023 Mar 23;56(11):12771. https://doi.org/10.1007/s10462-023-10467-7

[45]. Fuller A, Fan Z, Day C, Barlow C. Digital twin: Enabling technologies, challenges and open research. IEEE Access. 2020;8:108952. https://doi.org/10.1109/ACCESS.2020.2998358

[46]. McKee S. What is a digital twin? 2020 Feb. https://doi.org/10.61557/etsq9929

[47]. Castro D. Digital twin technology can make smart cities even smarter. 2019 Oct 1. https://itif.org/publications/2019/10/01/digital-twin-technology-can-make-smart-cities-even-smarter

[48]. Roy S, Singh S, Rizwan-uddin R. XR and digital twins, and their role in human factor studies. Front Energy Res. 2024 Mar 20;12. https://doi.org/10.3389/fenrg.2024.1359688

[49]. Faliagka E, Christopoulou E, Ringas D, Politi C, Kostis N, Leonardos D, et al. Trends in digital twin framework architectures for smart cities: A case study in smart mobility. Sensors. 2024 Mar 4;24(5):1665. https://doi.org/10.3390/s24051665

[50]. Boulos MNK, Zhang P. Digital twins: From personalised medicine to precision public health. J Pers Med. 2021 Jul 29;11(8):745. https://doi.org/10.3390/jpm11080745

[51]. Wang Y, Su Z, Guo S, Dai M, Luan TH, Liu Y. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. arXiv. 2023 Jan 1. https://arxiv.org/abs/2301.13350

[52]. Pachot A, Patissier C. Towards sustainable artificial intelligence: An overview of environmental protection uses and issues. arXiv. 2022 Jan 1. https://arxiv.org/abs/2212.11738

[53]. Chen Z, Wu M, Chan A, Li X, Ong YS. A survey on AI sustainability: Emerging trends on learning algorithms and research challenges. arXiv. 2022 Jan 1. https://arxiv.org/abs/2205.03824

[54]. Isensee C, Griese K, Teuteberg F. Sustainable artificial intelligence: A corporate culture perspective. NachhaltigkeitsManagForum. 2021 Dec 1;29:217. https://doi.org/10.1007/s00550-021-00524-6

[55]. Rohde F, Wagner J, Meyer A, Reinhard P, Voß M, Petschow U. Broadening the perspective for sustainable AI: Comprehensive sustainability criteria and indicators for AI systems. arXiv. 2023 Jan 1. https://arxiv.org/abs/2306.13686

[56]. Kurhade A, Talele V, Rao TV, Chandak A, Mathew VK. Computational study of PCM cooling for electronic circuit of smart-phone. Mater Today Proc. 2021;47:3171–6.

[57]. Kurhade AS, Amruth E, Joshi PS, Kondhalkar GE, Jadhav PA, Murali G, et al. Enhancing flat-plate solar collector efficiency: A numerical study. J Mines Met Fuels. 2025 Apr 16;73(4):1065–76.

[58]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: A CFD investigation. Int J Mod Phys C. 2022 Dec 28;33(12):2250159.

[59]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65–72.

[60]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: An experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024 Apr 30;116(2):51–8.

[61]. Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, et al. Predictive placement of IC chips using ANN-GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sci. 2024;118(2):137–44.

[62]. Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, et al. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;119(2):160–72.

[63]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. In: Techno-Societal 2018. 2020. p. 617–24.

[64]. Sidhappa KA, Hande MS, Patil MS, Mask MV. Heat transfer enhancement by using twisted tape inserts with circular holes in forced convection. Int J Innovations Eng Res Technol. 2016 Mar;3(3):1–7.

[65]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive review of electronic cooling technologies in harsh field environments: Obstacles, progress, and prospects. J Mines Met Fuels. 2024;72(6):557–79.

[66]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: Performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024;72(5):499–507.

[67]. Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, et al. Performance of solar collector using recycled aluminium cans for drying. J Mines Met Fuels. 2024;72(5):455–61.

[68]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28–37.

[69]. Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, et al. Optimizing aerofoil design: A comprehensive analysis through CFD and wind tunnel experiments. J Mines Met Fuels. 2024 Sep 17:713–24.

[70]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, et al. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques. J Mines Met Fuels. 2024 Sep 17:743–50.

[71]. Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, et al. Experimental investigation of heat transfer from symmetric and asymmetric IC chips on SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sci. 2024;121(1):137–44.

[72]. Patil P, Kardekar N, Yadav R, Kurhade A, Kamble D. Nanofluids: An experimental study for MQL grinding. J Mines Met Fuels. 2023;71(12):2751–6.

[73]. Patil P, Kardekar N, Yadav R, Kurhade A, Kamble D. Al2O3 nanofluids: An experimental study for MQL grinding. J Mines Met Fuels. 2023;71(12):2751–6.

[74]. Kurhade AS, Bhambare PS, Desai VP, Murali G, Yadav RS, Patil P, et al. Effect of wavy corrugated twisted tape inserts on heat transfer in double pipe heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;122(2):146–55.

[75]. Kurhade AS, Murali G, Jadhav PA, Bhambare PS, Waware SY, Gadekar T, et al. Performance analysis of corrugated twisted tape inserts for heat transfer augmentation. J Adv Res Fluid Mech Therm Sci. 2024;121(2):192–200.

[76]. Kurhade MA, Dange MM, Nalawade DB. Effect of wavy (corrugated) twisted tape inserts on heat transfer in a double pipe heat exchanger. Int J Innovations Eng Res Technol. 2015;2(1):1–8.

[77]. Kurhade AS, Gadekar T, Siraskar GD, Jawalkar SS, Biradar R, Kadam AA, et al. Thermal performance analysis of electronic components on different substrate materials. J Mines Met Fuels. 2024 Oct 30:1093–8.

[78]. Kurhade AS, Siraskar GD, Jawalkar SS, Gadekar T, Bhambare PS, Biradar R, et al. The impact of circular holes in twisted tape inserts on forced convection heat transfer. J Mines Met Fuels. 2024;72(9):1005–12.

[79]. Kurhade AS, Darade MM, Siraskar GD, Biradar R, Mahajan RG, Kardile CS, et al. State-of-the-art cooling solutions for electronic devices operating in harsh conditions. J Mines Met Fuels. 2024 Sep 27:843–61.

[80]. Kurhade AS, Warke P, Maniyar K, Bhambare PS, Waware SY, Deshpande S, et al. Wind rose analysis of temperature variation with sensor implantation technique for a wind turbine. J Adv Res Fluid Mech Therm Sci. 2024;122(1):1–8.

[81]. Kurhade AS, Siraskar GD, Bhambare PS, Keloth D, Kaithari SM, Waware SY. Enhancing smartphone circuit cooling: A computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132–45.

[82]. Yadav RS, Gadekar T, Gundage V, Patil P, Patil A, Patil P, et al. Numerical and experimental investigation of overlapping angle on strength and deformation of curved plate joined using arc welding. J Mines Met Fuels. 2024 Oct 30:1059–66.

[83]. Yadav RS, Nimbalkar A, Gadekar T, Patil P, Patil VN, Gholap AB, et al. Comparison of experimental and numerical investigation of mono-composite and metal leaf spring. J Mines Met Fuels. 2024 Sep 27:815–27.

[84]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Absolute time surface finish measurement of stepped holding shaft by automatic system. J Adv Manuf Syst. 2025 Jan 17.

[85]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, et al. Simulation and analysis of heat transfer in counter-flow helical double-pipe heat exchangers using CFD. Int J Mod Phys C. 2025 Jan 10.

[86]. Parkar A, Yadav RS, Chopade R, Dhavase N, Dhumal JR, Mankar SP, et al. Automating the two-dimensional design of HVACR ducts using computer programming language: An algorithmic approach. J Mines Met Fuels. 2025 Jan 7:211–20.

[87]. Kurhade AS, Siraskar GD, Darade MM, Murali G, Katkar TR, Patil SP, et al. Enhancement in heat transfer with nanofluids in double-pipe heat exchangers. J Mines Met Fuels. 2025 Jan 7:165–72.

[88]. Kurhade AS, Chougule SM, Kharat PV, Kondhalkar GE, Murali G, Raut PN, et al. Integrated approach to enhance vehicle safety: A novel bumper design with energy-absorbing mechanisms. J Mines Met Fuels. 2025 Jan 7:27–35.

[89]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, et al. Green adsorbents for heavy metal removal: Zinc ion uptake by Tinospora cordifolia biocarbon. J Mines Met Fuels. 2025 Jan 7:21–5.

[90]. Yadav R, Nimbalkar A, Kirpekar S, Patil PJ, Dalvi SA, Jadhav PA, et al. TRIP steel plate thickness effect on ultimate tensile strength of butt welded joint using Nd:YAG laser. Int J Veh Struct Syst. 2024 Dec 31;16(6).

[91]. Yadav RS, Gandhi P, Veeranjaneyulu K, Gaji R, Kirpekar S, Pawar D, et al. Influence of plate thickness on the mechanical behaviour of mild steel curved plates: An experimental study. J Mines Met Fuels. 2024 Dec 11:1319–27.

[92]. Kurhade AS, Bhambare PS, Siraskar GD, Mukesh S, Dixit PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. (Preprint/working paper).

[93]. Kurhade MA, Dange MM, Nalawade DB. Fuzzy logic modeling of heat transfer in a double pipe heat exchanger with wavy (corrugated) twisted tape inserts. Int J Innovations Eng Res Technol. 2015;2(1):1–8.

[94]. Kurhade AS, Siraskar GD, Raut PN, Dolas AS, Murali G, Dalvi SA, et al. Investigating the impact of oxygenated additives on exhaust emissions from unleaded gasoline vehicles. J Mines Met Fuels. 2025 Feb 24;73(2):333–44.

[95]. Purandare P, Yadav RS, Nema AA, Kulkarni A, Kirpekar S, Giri B, et al. Comparative study of helical coil, spiral coil and conical coil (90°) heat exchanger for single phase fluid flow. J Mines Met Fuels. 2025 Feb 24;73(2):377–84.

[96]. Kurhade AS, Siraskar GD, Dalvi SA, Kharat PV, Jadhav NA, Shelkande VD, et al. Passive cooling of EV batteries using phase change material: A simulation study. J Mines Met Fuels. 2025 Feb 24;73(2):447–54.

[97]. Kurhade AS, Kharat PV, Chougule SM, Darade MM, Karad MM, Murali G, et al. Harnessing the power of plastic waste: A sustainable approach to fuel production. J Mines Met Fuels. 2025 Feb 24;73(2):467–73.

[98]. Kurhade AS, Siraskar GD, Deshmukh MT, Patil PA, Chaudhari SS, Kadam AA, et al. Impact of PCM on heat dissipation from IC chips. J Mines Met Fuels. 2025 Mar 1;73(3).

[99]. Ramani P, Reji V, Sathish Kumar V, Murali G, Kurhade AS. Deep learning-based detection and classification of moss and crack damage in rock structures. J Mines Met Fuels. 2025 Mar 1;73(3).

[100]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, et al. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025 Mar 1;73(3).

[101]. Kurhade AS, Siraskar GD, Murali G, Pawar P, Patil AR, Waware SY, et al. Biodiesel blends: A sustainable solution for diesel engine performance improvement. J Mines Met Fuels. 2025 Mar 1;73(3).

[102]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, et al. Mitigating environmental impact: Performance and emissions of a diesel engine fueled with biodiesel blend. J Mines Met Fuels. 2025 Apr 16;73(4):981–9.

[103]. Wakchaure GN, Vijayarao P, Jadhav TA, Bhamare YM, Jagtap A, Gaji R, et al. Performance evaluation of trapezoidal ducts with delta wing vortex generators: An experimental investigation. J Mines Met Fuels. 2025 Apr 16;73(4):991–1003.

[104]. Wakchaure GN, Jagtap SV, Gandhi P, Chavan Patil AS, Kandharkar S, Kokare NN, et al. Heat transfer characteristics of trapezoidal duct using delta wing vortex generators. J Mines Met Fuels. 2025 Apr 17;73(4):1053–6.

[105]. Chougule SM, Murali G, Kurhade AS. Failure investigation of the driving shaft in an industrial paddle mixer. J Mines Met Fuels. 2025 May 9;73(5):1247–56.

[106]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, et al. Thermal management of mobile devices via PCM. J Mines Met Fuels. 2025 May 9;73(5):1313–20.

[107]. Chougule SM, Murali G, Kurhade AS. Finite element analysis and design optimization of a paddle mixer shaft. J Mines Met Fuels. 2025 May 9;73(5):1343–54.

[108]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, et al. Advancements in heat transfer enhancement using perforated twisted tapes: A comprehensive review. J Mines Met Fuels. 2025 May 9;73(5):1355–63.

[109]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, et al. The role of AI in reducing environmental impact in the mining sector. J Mines Met Fuels. 2025 May 9;73(5):1365–78.

[110]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Adv Sci Technol Res J. 2025;19(7):179–96.

[111]. Rao SS, Sugumaran S, Ameresh H, Amruth E, Thamke VP, Waware SY, et al. Impact of regularly spaced cut sections on heat transfer efficiency of helical strip inserts in circular pipes. J Mines Met Fuels. 2025 Jun 4;73(6):1517–25.

[112]. Sanadi A, Shinde S, Burgute G, Purandare P, Ramtirthkar C, Jadhav SZ, et al. Impact of exhaust gas recirculation on emissions of a diesel engine operating on Mohua oil. J Mines Met Fuels. 2025 Jun 4;73(6):1535–42.

[113]. Chaudhari SS, Shahakar M, Gholap P, Dhamdhere PB, Agrawal SS, Mahajan RG, et al. Enhancing energy efficiency in metallurgical operations using AI: A state-of-the-art review. J Mines Met Fuels. 2025 Jun 4;73(6):1595–616.

[114]. Waware SY, Ahire PP, Ghutepatil PR, Biradar R, Kadam AA, Kore SS, et al. Enhancing heat transfer in tubular heat exchanger using minijet technology. J Mines Met Fuels. 2025 Jun 4;73(6):1699–706.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com