Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 4(Publishing) > Original Research Article
ACE-5790

Published

2025-11-06

Issue

Vol. 8 No. 4(Publishing)

Section

Original Research Article

License

Copyright (c) 2025 Dipa Dattatray Dharmadhikari, Avani Ray, Babaso A. Shinde, Sandeep V. Raut, Rupali Dineshwar Taware, Smita Desai, Shital Yashwant Waware, Anant Sidhappa Kurhade

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Dipa Dattatray Dharmadhikari, Avani Ray, Babaso A. Shinde, Sandeep V. Raut, Rupali Dineshwar Taware, Smita Desai, … Anant Sidhappa Kurhade. (2025). Machine learning applications in ore grade estimation and blending optimization for modern mining. Applied Chemical Engineering, 8(4), ACE-5790. https://doi.org/10.59429/ace.v8i4.5790
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Machine learning applications in ore grade estimation and blending optimization for modern mining

Dipa Dattatray Dharmadhikari

Emerging Science and Technology Department, Maharashtra Institute of Technology, Chatrapati Sambhajinagar, Aurangabad - 431010, Maharashtra, India.

Avani Ray

Department of Computer Engineering, PCET’s Pimpri Chinchwad College of Engineering and Research, Ravet, Pune - 412101, Maharashtra, India.

Babaso A. Shinde

Department of Artificial Intelligence and Data Science, Marathwada Mitramandal’s Institute of Technology, Lohgaon, Pune - 411047, Affiliated to Savitribai Phule Pune University, Maharashtra, India.

Sandeep V. Raut

Department of Mechanical Engineering, ABMSP’s Anantrao Pawar College of Engineering and Research, Parvati, Pune - 411009, Maharashtra, India.

Rupali Dineshwar Taware

MCA Department (Commerce and Management), Vishwakarma University, Laxminagar, Kondhwa (Bk.), Pune – 411048, Maharashtra, India.

Smita Desai

Department of Electronics and Telecommunication, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India

Shital Yashwant Waware

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India


DOI: https://doi.org/10.59429/ace.v8i4.5790


Keywords: Artificial neural networks; blending optimization; grade estimation; mining 4.0; machine learning; predictive modeling


Abstract

The growing complexity of mineral deposits and the demand for sustainable, cost-effective mining have driven the adoption of machine learning (ML) for ore grade estimation and blending optimization. This review critically examines how ML models—such as ANN, SVM, RF, and ensemble techniques—surpass traditional geostatistical methods in handling non-linear spatial variability and limited sampling. The paper emphasizes hybrid frameworks that combine ML with geostatistics, optimization algorithms (GA, PSO, RL), and digital technologies like IoT and digital twins for real-time, adaptive decision-making. Key findings indicate that ML-based systems significantly enhance prediction accuracy, blending precision and operational efficiency while reducing waste and energy consumption. Despite these advancements, issues related to data quality, model interpretability, interoperability, and ethics remain. The study outlines future directions emphasizing explainable AI, standardized benchmarking, and robust data infrastructures for transparent and sustainable implementation of ML in mining. Recent industrial deployments illustrate the practical impact of ML in mining operations. For instance, Australian and Canadian mines have integrated ML-based ore grade control and real-time blending optimization systems, resulting in 10–15% improvements in recovery rates and reduced energy consumption. Similarly, predictive maintenance and digital twin frameworks powered by ML are being used by global firms such as Rio Tinto and BHP to achieve safer, more adaptive, and cost-efficient operations. These applications demonstrate the tangible value of ML in advancing sustainable and intelligent mining practices.


References

[1]. Nurseitov D, Bostanbekov K, Abdimanap G, Abdallah A, Alimova A, Kurmangaliyev D. Enhancing Core Image Classification Using Generative Adversarial Networks (GANs). arXiv, 2022 Jan 1. https://arxiv.org/abs/2204.14224

[2]. Fu Y, Aldrich C. Deep Learning in Mining and Mineral Processing Operations: A Review. IFAC-PapersOnLine, 2020;53(2):11920. https://doi.org/10.1016/j.ifacol.2020.12.712

[3]. Pasupuleti V, Thuraka B, Kodete CS, Malisetty S. Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management. Logistics, 2024;8(3):73. https://doi.org/10.3390/logistics8030073

[4]. Wu H, Walmsley A, Pan L, Dong W, Bittar M, Gear S. Case Study: Using Machine Learning and Ultra-Deep-Reading Resistivity for Better Reservoir Delineation. International Petroleum Technology Conference, 2020. https://doi.org/10.2523/iptc-20152-abstract

[5]. Myśliwiec P, Kubit A, Szawara P. Optimization of 2024-T3 Aluminum Alloy Friction Stir Welding Using Random Forest, XGBoost, and MLP Machine Learning Techniques. Materials, 2024;17(7):1452. https://doi.org/10.3390/ma17071452

[6]. Abubakar A. Machine Learning for Geoscience Applications. 2019;1. https://doi.org/10.3997/2214-4609.201901987

[7]. Alfarisi O, Raza A, Zhang H, Ozzane D, Sassi M, Zhang T. Machine Learning Guided 3D Image Recognition for Carbonate Pore and Mineral Volumes Determination. arXiv, 2021 Jan 1. https://arxiv.org/abs/2111.04612

[8]. Gouda MF, Latiff AHA, Alashloo SYM. Estimation of Litho-Fluid Facies Distribution from Zero-Offset Acoustic and Shear Impedances. Applied Sciences, 2022;12(15):7754. https://doi.org/10.3390/app12157754

[9]. Vukadin D, Čogelja Z, Vidaček R, Brkić V. Lithology and Porosity Distribution of High-Porosity Sandstone Reservoir in North Adriatic Using Machine Learning Synthetic Well Catalogue. Applied Sciences, 2023;13(13):7671. https://doi.org/10.3390/app13137671

[10]. Stocker M, Pachepsky Y, Hill RL. Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms. Frontiers in Artificial Intelligence, 2022;4. https://doi.org/10.3389/frai.2021.768650

[11]. Xu Y, Sellers E, Fathi-Salmi E. Rock recognition and identification for selective mechanical mining: a self-adaptive artificial neural network approach. Bulletin of Engineering Geology and the Environment, 2023;82(7). https://doi.org/10.1007/s10064-023-03311-3

[12]. He Y, Zhu K, Gao S, Liu T, Li Y. Theory and method of genetic-neural optimizing cut-off grade and grade of crude ore. Expert Systems with Applications, 2008;36(4):7617. https://doi.org/10.1016/j.eswa.2008.09.018

[13]. Chen X, Zhang Y, Chen W. Advanced Predictive Modeling of Concrete Compressive Strength and Slump Characteristics: A Comparative Evaluation of BPNN, SVM, and RF Models Optimized via PSO. Materials, 2024;17(19):4791. https://doi.org/10.3390/ma17194791

[14]. Boldrini L, Bibault J, Masciocchi C, Shen Y, Bittner MI. Deep Learning: A Review for the Radiation Oncologist. Frontiers in Oncology, 2019;9. https://doi.org/10.3389/fonc.2019.00977

[15]. Zhao L, Goh SH, Chan Y, Yeoh BL, Hu H, Thor MH, Tan A, Lam J. Optimization of an Artificial Neural Network System for the Prediction of Failure Analysis Success. Microelectronics Reliability, 2018;92:136. https://doi.org/10.1016/j.microrel.2018.11.014

[16]. Erofeev A, Orlov D, Ryzhov A, Koroteev D. Prediction of Porosity and Permeability Alteration based on Machine Learning Algorithms. arXiv, 2019. https://arxiv.org/abs/1902.06525

[17]. Li X, Li S. Large-Scale Landslide Displacement Rate Prediction Based on Multi-Factor Support Vector Regression Machine. Applied Sciences, 2021;11(4):1381. https://doi.org/10.3390/app11041381

[18]. Wang Z. Artificial Intelligence and Machine Learning in Credit Risk Assessment: Enhancing Accuracy and Ensuring Fairness. Open Journal of Social Sciences, 2024;12(11):19. https://doi.org/10.4236/jss.2024.1211002

[19]. Bui DT, Shahabi H, Omidvar E, Shirzadi A, Geertsema M, Clague JJ, Khosravi K, Pradhan B, Pham BT, Chapi K, Barati Z, Ahmad BB, Rahmani H, Gróf G, Lee S. Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019;11(8):931. https://doi.org/10.3390/rs11080931

[20]. Gu Y, Zhang D, Bao Z. A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: A case study of member of chang 4+5, western Jiyuan Oilfield, Ordos Basin. Journal of Petroleum Science and Engineering, 2021;199:108350. https://doi.org/10.1016/j.petrol.2021.108350

[21]. Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 2020;54(3):1937. https://doi.org/10.1007/s10462-020-09896-5

[22]. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013;7. https://doi.org/10.3389/fnbot.2013.00021

[23]. Sun TH, Wang C, Wu YL, Hsu KC, Lee T. Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis. Scientific Reports, 2023;13(1). https://doi.org/10.1038/s41598-023-42338-0

[24]. Pham BT, Bui DT, Prakash I, Dholakia MB. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA, 2016;149:52. https://doi.org/10.1016/j.catena.2016.09.007

[25]. Tercha W, Tadjer SA, Chekired F, Canale L. Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems. Energies, 2024;17(5):1124. https://doi.org/10.3390/en17051124

[26]. Dinesh Keloth Kaithari, Anant Kaulage, Ayyappadas MT, Puja Gholap, Aarti Puri, Mahesh Ashok Bhandari, … Anant Sidhappa Kurhade. A Review of Smart AI Systems for Real-Time Monitoring and Optimization of Ocean-Based Carbon Capture, Utilization, and Storage Networks. Applied Chemical Engineering, 2025;8(3):ACE-5747. https://doi.org/10.59429/ace.v8i3.5747

[27]. Chakraborty D, Elhegazy H, Elzarka H, Gutierrez L. A novel construction cost prediction model using hybrid natural and light gradient boosting. Advanced Engineering Informatics, 2020;46:101201. https://doi.org/10.1016/j.aei.2020.101201

[28]. Al-Taai SR, Azize NM, Thoeny ZA, Imran H, Bernardo LFA, Al-Khafaji Z. XGBoost Prediction Model Optimized with Bayesian for the Compressive Strength of Eco-Friendly Concrete. Applied Sciences, 2023;13(15):8889. https://doi.org/10.3390/app13158889

[29]. Zheng Y, Deng H, Wang R, Wu J. A Multimodal Learning Framework for Comprehensive 3D Mineral Prospectivity Modeling. arXiv, 2023. https://arxiv.org/abs/2309.02911

[30]. Jiang S, Xiao R, Wang L, Luo X, Huang C, Wang J, Chin K, Nie X. Combining Deep Neural Networks and Classical Time Series Regression Models for Forecasting Patient Flows. IEEE Access, 2019;7:118965. https://doi.org/10.1109/access.2019.2936550

[31]. Hanifinia A, Nazarnejad H, Najafi S, Kornejady A, Pourghasemi HR. Landslide susceptibility assessment and mapping using statistical and data mining models in Iran. Research Square, 2021. https://doi.org/10.21203/rs.3.rs-239985/v1

[32]. Yu H, Pei W, Zhang J, Chen G. Landslide Susceptibility Mapping and Driving Mechanisms Based on Multiple Machine Learning Models. Remote Sensing, 2023;15(7):1886. https://doi.org/10.3390/rs15071886

[33]. Manjate EPA, Saadat M, Toriya H, Inagaki F, Kawamura Y. Application of Entropy Method for Estimating Factor Weights in Mining-Method Selection. Journal of Sustainable Mining, 2022;20(4):296. https://doi.org/10.46873/2300-3960.1328

[34]. Zhang J, Huang Y, Wang Y, Ma G. Multi-objective Optimization of Concrete Mixture Proportions Using Machine Learning and Metaheuristic Algorithms. Construction and Building Materials, 2020;253:119208. https://doi.org/10.1016/j.conbuildmat.2020.119208

[35]. Binetti MS, Uricchio VF, Massarelli C. Isolation Forest for Environmental Monitoring. Environments, 2025;12(4):116. https://doi.org/10.3390/environments12040116

[36]. Govil N, Sharma A. Estimation of Cost and Development Effort in Scrum-Based Software Projects. Advances in Engineering Software, 2022;172:103209. https://doi.org/10.1016/j.advengsoft.2022.103209

[37]. Auret L, Aldrich C. Interpretation of Nonlinear Relationships Between Process Variables Using Random Forests. Minerals Engineering, 2012;35:27. https://doi.org/10.1016/j.mineng.2012.05.008

[38]. Šutienė K, Schwendner P, Șipoș C, Lorenzo L, Mirchev M, Lameski P, Kabašinskas A, Tidjani C, Öztürkkal B, Černevičienė J. Enhancing Portfolio Management Using Artificial Intelligence. Frontiers in Artificial Intelligence, 2024;7. https://doi.org/10.3389/frai.2024.1371502

[39]. Polyzou A, Karypis G. Grade Prediction with Course and Student Specific Models. Lecture Notes in Computer Science, 2016; p. 89. https://doi.org/10.1007/978-3-319-31753-3_8

[40]. Tanaka Y, Miki H, Suyantara GPW, Aoki Y, Hirajima T. Mineralogical Prediction on the Flotation Behavior of Copper and Molybdenum Minerals from Blended Cu–Mo Ores in Seawater. Minerals, 2021;11(8):869. https://doi.org/10.3390/min11080869

[41]. Helleckes LM, Hemmerich J, Wiechert W, Lieres E von, Grünberger A. Machine Learning in Bioprocess Development: From Promise to Practice. Trends in Biotechnology, 2022;41(6):817. https://doi.org/10.1016/j.tibtech.2022.10.010

[42]. Ball P. Using Artificial Intelligence to Accelerate Materials Development. MRS Bulletin, 2019;44(5):335. https://doi.org/10.1557/mrs.2019.113

[43]. Watson NJ, Bowler AL, Rady A, Fisher OJ, Simeone A, Escrig J, Woolley E, Adedeji AA. Intelligent Sensors for Sustainable Food and Drink Manufacturing. Frontiers in Sustainable Food Systems, 2021;5. https://doi.org/10.3389/fsufs.2021.642786

[44]. Injadat M, Moubayed A, Nassif AB, Shami A. Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities. Artificial Intelligence Review, 2021;54(5):3299. https://doi.org/10.1007/s10462-020-09948-w

[45]. Jassim MA, Abdulwahid SN. Data Mining Preparation: Process, Techniques and Major Issues in Data Analysis. IOP Conference Series: Materials Science and Engineering, 2021;12053. https://doi.org/10.1088/1757-899x/1090/1/012053

[46]. Cheng J. Data-Mining Research in Education. arXiv, 2017. https://arxiv.org/abs/1703.10117

[47]. Mudallal R, Mrayyan MT, Kharabsheh M. Use of Machine Learning to Predict Creativity Among Nurses: A Multidisciplinary Approach. BMC Nursing, 2025;24(1). https://doi.org/10.1186/s12912-025-03151-4

[48]. Duan S, Cao H, Liu H, Miao L, Wang J, Zhou X, Wang W, Hu P, Qu L, Wu Y. Development of a Machine Learning-Based Multimode Diagnosis System for Lung Cancer. Aging, 2020;12(10):9840. https://doi.org/10.18632/aging.103249

[49]. Urso A, Fiannaca A, Rosa ML, Ravì V, Rizzo R. Data Mining: Classification and Prediction. Elsevier eBooks, 2017; p. 384. https://doi.org/10.1016/b978-0-12-809633-8.20461-5

[50]. Sharma N, Saharia M, Ramana GV. High Resolution Landslide Susceptibility Mapping Using Ensemble Machine Learning and Geospatial Big Data. CATENA, 2023;235:107653. https://doi.org/10.1016/j.catena.2023.107653

[51]. Barker A, Style H, Luksch K, Sunami S, Garrick D, Hill F, Foot CJ, Bentine E. Applying Machine Learning Optimization Methods to the Production of a Quantum Gas. Machine Learning Science and Technology, 2020;1(1):15007. https://doi.org/10.1088/2632-2153/ab6432

[52]. Singh TP, Jhariya DC, Sahu M, Dewangan P, Dhekne PY. Classifying Minerals using Deep Learning Algorithms. IOP Conference Series: Earth and Environmental Science, 2022;1032(1):12046. https://doi.org/10.1088/1755-1315/1032/1/012046

[53]. Fieggen J, Smith E, Arora L, Segal B. The Role of Machine Learning in HIV Risk Prediction. Frontiers in Reproductive Health, 2022;4. https://doi.org/10.3389/frph.2022.1062387

[54]. Padala VS, Gandhi K, Dasari P. Machine Learning: The New Language for Applications. IAES International Journal of Artificial Intelligence, 2019;8(4):411. https://doi.org/10.11591/ijai.v8.i4.pp411-421

[55]. Ren G, Yu K, Xie Z, Wang P, Zhang W, Huang Y, Wang Y, Wu X. Current Applications of Machine Learning in Spine: From Clinical View. Global Spine Journal, 2021;12(8):1827. https://doi.org/10.1177/21925682211035363

[56]. Ouhadi A, Yahouni Z, Mascolo MD. Integrating Machine Learning and Operations Research Methods for Scheduling Problems: A Bibliometric Analysis and Literature Review. IFAC-PapersOnLine, 2024;58(19):946. https://doi.org/10.1016/j.ifacol.2024.09.155

[57]. Tırkolaee EB, Sadeghi S, Mooseloo FM, Vandchali HR, Aeini S. Application of Machine Learning in Supply Chain Management: A Comprehensive Overview. Mathematical Problems in Engineering, 2021;2021:1. https://doi.org/10.1155/2021/1476043

[58]. Kharfan M, Chan VWK, Efendigil T. A Data-Driven Forecasting Approach for Newly Launched Seasonal Products. Annals of Operations Research, 2020;303:159. https://doi.org/10.1007/s10479-020-03666-w

[59]. Parimal S. Bhambare, Anant Kaulage, Milind Manikrao Darade, Govindarajan Murali, Swati Mukesh Dixit, P. S. N. Masthan Vali, … Chaitalee Naresh Mali. Artificial Intelligence for Sustainable Environmental Management in the Mining Sector: A Review. Applied Chemical Engineering, 2025;8(3):ACE-5756. https://doi.org/10.59429/ace.v8i3.5756

[60]. Sharp M, Ak R, Hedberg T. A Survey of the Advancing Use and Development of Machine Learning in Smart Manufacturing. Journal of Manufacturing Systems, 2018;48:170. https://doi.org/10.1016/j.jmsy.2018.02.004

[61]. Kumar S, Gopi T, Harikeerthana N, Gupta MK, Gaur V, Królczyk G, Wu C. Machine Learning Techniques in Additive Manufacturing. Journal of Intelligent Manufacturing, 2022;34(1):21. https://doi.org/10.1007/s10845-022-02029-5

[62]. Sundaram S, Zeid A. Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines, 2023;14(3):570. https://doi.org/10.3390/mi14030570

[63]. Zhao YF, Xie J, Sun L. On the Data Quality and Imbalance in Machine Learning-Based Design and Manufacturing. Engineering, 2024. https://doi.org/10.1016/j.eng.2024.04.024

[64]. Kim DH, Kim DJ, Choi S. A Variational-Mode-Decomposition-Cascaded Long Short-Term Memory with Attention Model for VIX Prediction. Applied Sciences, 2025;15(10):5630. https://doi.org/10.3390/app15105630

[65]. Nguyen VB, Teo A, Ba T, Ahluwalia K, Kang CW. A Distributed Model Predictive Control with Machine Learning for Automated Shot Peening Machine. The International Journal of Advanced Manufacturing Technology, 2022;122:2419. https://doi.org/10.1007/s00170-022-10018-4

[66]. Pugliese R, Regondi S, Marini R. Machine Learning-Based Approach: Global Trends, Research Directions, and Regulatory Standpoints. Data Science and Management, 2021;4:19. https://doi.org/10.1016/j.dsm.2021.12.002

[67]. Sidey-Gibbons JAM, Sidey‐Gibbons C. Machine Learning in Medicine: A Practical Introduction. BMC Medical Research Methodology, 2019;19(1). https://doi.org/10.1186/s12874-019-0681-4

[68]. Feizabadi J. Machine Learning Demand Forecasting and Supply Chain Performance. International Journal of Logistics Research and Applications, 2020;25(2):119. https://doi.org/10.1080/13675567.2020.1803246

[69]. Chy MKH, Buadi ON. Role of Machine Learning in Policy Making and Evaluation. International Journal of Innovative Science and Research Technology, 2024;456. https://doi.org/10.38124/ijisrt/ijisrt24oct687

[70]. Plathottam SJ, Rzonca A, Lakhnori R, Iloeje CO. A Review of Artificial Intelligence Applications in Manufacturing Operations. Journal of Advanced Manufacturing and Processing, 2023;5(3). https://doi.org/10.1002/amp2.10159

[71]. Hajj ME, Hammoud J. Unveiling the Influence of Artificial Intelligence and Machine Learning on Financial Markets. Journal of Risk and Financial Management, 2023;16(10):434. https://doi.org/10.3390/jrfm16100434

[72]. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical Machine Learning in Health Care. arXiv, 2020. https://arxiv.org/abs/2009.10576

[73]. Elvas LB, Almeida AI, Ferreira JC. The Role of AI in Cardiovascular Event Monitoring and Early Detection. JMIR Medical Informatics, 2025;13. https://doi.org/10.2196/64349

[74]. Roshanaei M, Khan MR, Sylvester NN. Enhancing Cybersecurity Through AI and ML. Journal of Information Security, 2024;15(3):320. https://doi.org/10.4236/jis.2024.153019

[75]. Hindocha S, Badea C. Moral Exemplars for the Virtuous Machine. AI and Ethics, 2021;2(1):167. https://doi.org/10.1007/s43681-021-00089-6

[76]. Luccioni AS, Bengio Y. On the Morality of Artificial Intelligence. arXiv, 2019. https://arxiv.org/abs/1912.11945

[77]. Shandhi MMH, Dunn J. AI in Medicine: Where Are We Now and Where Are We Going? Cell Reports Medicine, 2022;3(12):100861. https://doi.org/10.1016/j.xcrm.2022.100861

[78]. Kolyshkina I, Simoff S. Interpretability of Machine Learning Solutions in Public Healthcare. Frontiers in Big Data, 2021;4. https://doi.org/10.3389/fdata.2021.660206

[79]. Adlung L, Cohen Y, Mor U, Elinav E. Machine Learning in Clinical Decision Making. Med, 2021;2(6):642. https://doi.org/10.1016/j.medj.2021.04.006

[80]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. InTechno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications-Volume 1 2019 Nov 7 (pp. 617-624). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-16848-3_56

[81]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: A CFD investigation. International Journal of Modern Physics C. 2022 Dec 28;33(12):2250159. https://doi.org/10.1142/S0129183122501595

[82]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65-72. https://doi.org/10.14445/22315381/IJETT-V71I3P208

[83]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: An experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024;116(2):51-8. https://doi.org/10.37934/arfmts.116.2.5158

[84]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers. J Mines Met Fuels. 2024; 72 (7): 743-50. https://doi.org/10.18311/jmmf/2024/45348

[85]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28-37. https://doi.org/10.37934/arnht.23.1.2837

[86]. Kurhade AS, Bhambare PS, Siraskar GD, Dixit SM, Purandare PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. J Adv Res Numer Heat Trans. 2024;26(1):34-43. https://doi.org/10.37934/arnht.26.1.3443

[87]. Kurhade AS, Siraskar GD, Bhambare PS, Kaithari DK, Dixit SM, Waware SY. Enhancing smartphone circuit cooling: A computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132-45. https://doi.org/10.37934/arnht.27.1.132145

[88]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Advances in Science and Technology. Research Journal. 2025;19(7). https://doi.org/10.12913/22998624/203873

[89]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, Kurhade AS. Green Adsorbents for Heavy Metal Removal: A Study on Zinc Ion Uptake by Tinospora cordifolia Biocarbon. Journal of Mines, Metals & Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47121

[90]. Siraskar GD, Kurhade AS, Murali G, Prakash MA, Bharathiraja N, Dharmadhikari DD, Waware SY. Turbulence model comparison and optimal geometry identification in trapped vortex combustors: A RANS-based study. International Journal of Modern Physics C. 2025 Sep 24:2650020. https://doi.org/10.1142/S0129183126500208

[91]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, Waware SY. Simulation and analysis of heat transfer in counter-flow helical doublepipe heat exchangers using CFD. Int J Mod Phys C. 2025 Mar 15. https://doi.org/10.1142/S0129183125500433

[92]. Dinesh Keloth kaithari, Ayyappadas MT, Shalini Goel, Asma Shahin, Shwetal Kishor Patil, Swapnil S. Chaudhari, … Anant Sidhappa Kurhade. (2025). A review on GA-NN based control strategies for floating solar-ocean hybrid energy platforms. Applied Chemical Engineering, 8(3), ACE-5745. https://doi.org/10.59429/ace.v8i3.5745

[93]. Pramod Dhamdhere, Swati Mukesh Dixit, Manjusha Tatiya, Babaso A. Shinde, Jyoti Deone, Anant Kaulage, Shital Yashwant Waware. (2025). AI-based monitoring and management in smart aquaculture for ocean fish farming systems. Applied Chemical Engineering, 8(3), ACE-5746. https://doi.org/10.59429/ace.v8i3.5746

[94]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, Murali G, Kurhade AS. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025; 73 (3). https://doi.org/10.18311/jmmf/2025/47773

[95]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, Waware SY. Mitigating environmental impact: A study on the performance and emissions of a diesel engine fueled with biodiesel blend. Journal of Mines, Metals & Fuels. 2025 Apr 1;73(4):981-9. https://doi.org/10.18311/jmmf/2025/47669

[96]. Kurhade AS, Amruth E, Joshi PS, Kondhalkar GE, Jadhav PA, Murali G, Mahajan RG, Waware SY. Enhancing Flat-Plate Solar Collector Efficiency: A Numerical Study. Journal of Mines, Metals & Fuels. 2025 Apr 1;73(4). https://doi.org/10.18311/jmmf/2025/48249

[97]. Chougule SM, Murali G, Kurhade AS. Failure Investigation of the Driving Shaft in an Industrial Paddle Mixer. Journal of Mines, Metals & Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48627

[98]. Chougule SM, Murali G, Kurhade AS. Finite Element Analysis and Design Optimization of a Paddle Mixer Shaft. Journal of Mines, Metals & Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48664

[99]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, Kurhade AS. The Role of AI in Reducing Environmental Impact in the Mining Sector. Journal of Mines, Metals & Fuels. 2025 May 1;73(5).

[100]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, Kurhade AS. Advancements in Heat Transfer Enhancement using Perforated Twisted Tapes: A Comprehensive Review. Journal of Mines, Metals & Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48438

[101]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, Dalvi SA, Waware SY. Thermal management of mobile devices via PCM. Journal of Mines, Metals & Fuels. 2025 May 1;73(5):1313-20. https://doi.org/10.18311/jmmf/2025/48437

[102]. Napte K, Kondhalkar GE, Patil SV, Kharat PV, Banarase SM, Kurhade AS, Waware SY. Recent Advances in Sustainable Concrete and Steel Alternatives for Marine Infrastructure. Sustainable Marine Structures. 2025 Jun 4:107-31. https://doi.org/10.36956/sms.v7i2.2072

[103]. Chougule SM, Murali G, Kurhade AS. Design and Analysis of Industrial Material Handling Systems using FEA and Dynamic Simulation Techniques: FEA AND SIMULATION-BASED DESIGN OF MATERIAL HANDLING SYSTEMS. Journal of Scientific & Industrial Research (JSIR). 2025 Jun 18;84(6):645-53. https://doi.org/10.56042/jsir.v84i6.17512

[104]. Kondhalkar VK, Kurhade AS. Optimized Placement of IC Chips for Enhanced Thermal Cooling: A Hybrid ANN-GA Approach in Numerical Heat Transfer.

[105]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Real-Time Surface Finish Measurement of Stepped Holding Shaft by Automatic System. Journal of Advanced Manufacturing Systems. 2025 Feb 25:1-26. https://doi.org/10.1142/S0219686725500386



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com