Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 4(Publishing) > Review Article
ACE-5807

Published

2025-12-02

Issue

Vol. 8 No. 4(Publishing)

Section

Review Article

License

Copyright (c) 2025 Gulkhayo Umidjonova, Yulduz Khidirova, Mamura Dustmurodova, Tulqin Shaymardonov, Sitora Samadiy, Shavkat Umarov, Firuza Davronova, Tozagul Jabborova, Sadoqat Xidirova, Bakhodir Abdullayev, Murodjon Samadiy

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Gulkhayo Umidjonova, Yulduz Khidirova, Mamura Dustmurodova, Tulqin Shaymardonov, Sitora Samadiy, Shavkat Umarov, … Murodjon Samadiy. (2025). Methods and recent developments in the field of lithium extraction from water resources. Applied Chemical Engineering, 8(4), ACE-5807. https://doi.org/10.59429/ace.v8i4.5807
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Methods and recent developments in the field of lithium extraction from water resources

Gulkhayo Umidjonova

Karshi State Technical University, Karshi, 180119, Uzbekistan

Yulduz Khidirova

Karshi State Technical University, Karshi, 180119, Uzbekistan

Mamura Dustmurodova

Karshi State Technical University, Karshi, 180119, Uzbekistan

Tulqin Shaymardonov

Karshi State Technical University, Karshi, 180119, Uzbekistan

Sitora Samadiy

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, 100174, Uzbekistan

Shavkat Umarov

Jizzakh State Pedagogical University, Jizzakh, 130100, Uzbekistan

Firuza Davronova

Karshi State University, Karshi, 180119, Uzbekistan

Tozagul Jabborova

University of Economics and Pedagogy, Karshi, 180119, Uzbekistan

Sadoqat Xidirova

University of Economics and Pedagogy, Karshi, 180119, Uzbekistan

Bakhodir Abdullayev

University of Economics and Pedagogy, Karshi, 180119, Uzbekistan; Karshi State Technical University, Karshi, 180119, Uzbekistan

Murodjon Samadiy

Karshi State Technical University, Karshi, 180119, Uzbekistan


DOI: https://doi.org/10.59429/ace.v8i4.5807


Keywords: lithium recovery; adsorption; ion exchange; geothermal water; bittern


Abstract

With rapid development in car electronics, hybrid, and electric vehicles, there is an emerging demand for Lithium and its products, such as the carbonate, lithium hydroxide, and mineral concentrates, which capture 80% of the world’s demand. The demand for lithium will rise by 60% over the next few years due to electric vehicle use. This requires quick and effective methods of discovery and exploration for new deposits and low-cost, high-resolution technologies for exploration. You can quickly map minerals and obtain information on the quantity and spatial distribution of ore and fossil minerals with hyperspectral imagery. The lithium resource deposit within Salt Lake water, sea, and geothermal water consists of 70-80% of the total and is a superior raw material for lithium extraction. In this respect, there is increasingly more research on joining the industrial extraction of Lithium from water bodies. Recycling lithium-ion batteries is also a means of increasing lithium extraction with a different method. Lithium levels in geothermal waters are confined compared with brines, and not all the methods are effective. The extraction procedures for Lithium from liquid media involve evaporation, extraction with solvents, and the use of membranes, nanofiltration, and adsorption. The most efficient and plausible application of highly functional selective adsorbents with minimal energy usage and safety for the environment. The most investigated are ionic sieves based on manganese LMO. The most chemically stable lithium-ion sieves based on titanium LTO are also considered.


References

[1]. Tadesse, B., Makuei, F., Albijanic, B., Dyer, L. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering. 2019; 131, 170-184.

[2]. Abdullayev, B., Rifky, M., Makhmayorov, J., Usmanov, I., Deng, T., Samadiy, M. Adsorption method and adsorbents for the recovery of lithium compounds from water sources. International Journal of Engineering Trends and Technology 2023; 71(9), 212-226.

[3]. Choubey, P. K., Kim, M. S., Srivastava, R. R., Lee, J. C., Lee, J. Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering 2016; 89, 119-137.

[4]. Abdullayev, B., Makhmayorov, J., Ro‘ziyeva, Z., Shabarova, U., Deng, T., Samadiy, M. Study of the mutual influence of components in the lithium nitrate–ammonium chloride–water system. New Materials, Compounds and Applications 2023; 7(3), 188-193.

[5]. Mends, E. A., Chu, P. Lithium extraction from unconventional aqueous resources–a review on recent technological development for seawater and geothermal brines. Journal of Environmental Chemical Engineering 2023; 98(12), 11(5), 110710.

[6]. Khalil, A., Mohammed, S., Hashaikeh, R., Hilal, N. Lithium recovery from brine: Recent developments and challenges. Desalination 2022; 528, 115611.

[7]. Sun, X., Hao, H., Zhao, F., Liu, Z. Tracing global lithium flow: A trade-linked material flow analysis. Resources, Conservation and Recycling 2017, 124, 50-61.

[8]. Loganathan, P., Naidu, G., Vigneswaran, S. Mining valuable minerals from seawater: a critical review. Environmental Science: Water Research & Technology 2017; 3(1), 37-53.

[9]. Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P., & Wallington, T. J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore geology reviews 2012; 48, 55-69.

[10]. Labay, J. L. M., Schmidt, J. M., Shew, N. B., Todd, E., Wang, B., Werdon, M. B., & Yager, D. B. GIS-based identification of areas that have resource potential for critical minerals in six selected groups of deposit types in Alaska 2016.

[11]. Kundu, T., Rath, S. S., Das, S. K., Parhi, P. K., Angadi, S. I. Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. Powder Technology 2023; 415, 118142.

[12]. Samadiy, M., Deng, T. Lithium Recovery from Water Resources by Ion Exchange and Sorption Method. Journal of the Chemical Society of Pakistan 2021; 43(4).

[13]. Guo, G. C., Wang, D., Wei, X. L., Zhang, Q., Liu, H., Lau, W. M., & Liu, L. M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. The journal of physical chemistry letters 2015; 6(24), 5002-5008.

[14]. Zhang, Y., Liu, L., Van der Bruggen, B., & Yang, F. Nanocarbon based composite electrodes and their application in microbial fuel cells. Journal of Materials Chemistry A 2017; 5(25), 12673-12698.

[15]. Dursun, T., & Soutis, C. Recent developments in advanced aircraft aluminium alloys. Materials & Design 2014; 56, 862-871.

[16]. Wang, L., Meng, C. G., Han, M., Ma., W. Lithium uptake in fixed-pH solution by ion sieves. Journal of colloid and interface science 2008; 325(1), 31-40.

[17]. Wu, L., Zhang, C., Kim, S., Hatton, T. A., Mo, H., & Waite, T. D. Lithium recovery using electrochemical technologies: Advances and challenges. Water Research. 2022; 221, 118822.

[18]. Ciez, R. E., Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nature Sustainability 2019; 2(2), 148-156.

[19]. Yu, H., Naidu, G., Zhang, C., Wang, C., Razmjou, A., Han, D. S., Shon, H. Metal-based adsorbents for lithium recovery from aqueous resources. Desalination, 2022; 539, 115951.

[20]. Paranthaman, M. P., Li, L., Luo, J., Hoke, T., Ucar, H., Moyer, B. A., Harrison, S. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environmental science & technology. 2017; 51(22), 13481-13486.

[21]. Yuan, Z. Y., Li, Y. F., Li, T. Y., Yao, J. L., Zhang, J. F., & Wang, X. M. Identifying Key Residual Aluminum Species Responsible for Aggravation of Nanofiltration Membrane Fouling. Available at SSRN. 4120344.

[22]. Tabarés, F. L., Oyarzabal, E., Martin-Rojo, A. B., Tafalla, D., De Castro, A., Soleto, A. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems. Nuclear Fusion. 2016; 57(1), 016029.

[23]. Shojaeddini, E., Alonso, E., Nassar, N. Estimating Price Elasticity of Demand for Mineral Commodities in the Face of Surging Demand. Available at SSRN. 2023; 4601980.

[24]. Grosjean, C., Miranda, P. H., Perrin, M., Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews. 2012; 16(3), 1735-1744.

[25]. Aylmore, M. G., Merigot, K., Quadir, Z., Rickard, W. D., Evans, N. J., McDonald, B. J., Spitalny, P. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores. minerals engineering 2018; 116, 182-195.

[26]. Kruse, F. A., Boardman, J. W., Huntington, J. F. Comparison between AVIRIS and hyperion for hyperspectral mineral mapping. IEEE Trans Geosci Remote Sens 2003; 41, 1388-1400.

[27]. Booysen, R., Lorenz, S., Thiele, S. T., Fuchsloch, W. C., Marais, T., Nex, P. A., Gloaguen, R. Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia. Remote Sensing of Environment 2022; 269, 112790.

[28]. Cardoso-Fernandes, J., Teodoro, A. C., Lima, A., Mielke, C., Körting, F., Roda-Robles, E., Cauzid, J. Multi-scale approach using remote sensing techniques for lithium pegmatite exploration: first results. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium 2020, September; pp. 5226-5229.

[29]. Boschetti, T. A revision of lithium minerals thermodynamics: Possible implications for fluids geochemistry and geothermometry. Geothermics 2022; 98, 102286.

[30]. Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., & Cleary, J. Global lithium sources—industrial use and future in the electric vehicle industry: a review. Resources 2018; 7(3), 57.

[31]. Yelatontsev, D., & Mukhachev, A. Processing of lithium ores: Industrial technologies and case studies–A review. Hydrometallurgy 2021; 201, 105578.

[32]. Gil-Alana, L. A., & Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resources Policy 2019; 60, 198-202.

[33]. US Geological Survey. Mineral commodity summaries 2020. US Geological Survey 2020; 200.

[34]. Wang, J., Hu, H., & Wu, K. Extraction of lithium, rubidium and cesium from lithium porcelain stone. Hydrometallurgy 2020; 191, 105233.

[35]. Moore, J., Bullard, N., & Officer, C. C. BNEF executive Factbook 2021.

[36]. Disu, B., Rafati, R., Haddad, A. S., Roca, J. A. M., Clar, M.I.I., Bakhtiari, S.S.E. Review of recent advances in lithium extraction from subsurface brines. Geoenergy Science and Engineering 2024; 241, 213189.

[37]. Toba, A. L., Nguyen, R. T., Cole, C., Neupane, G., & Paranthaman, M. P. US lithium resources from geothermal and extraction feasibility. Resources, Conservation and Recycling 2021; 169, 105514.

[38]. Flexer, V., Baspineiro, C. F., & Galli, C. I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment 2018; 639, 1188-1204.

[39]. Swain, B. Recovery and recycling of lithium: A review. Separation and Purification Technology 2017; 172, 388-403.

[40]. An, J. W., Kang, D. J., Tran, K. T., Kim, M. J., Lim, T., & Tran, T. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 2012; 117, 64-70.

[41]. DERA, D. R. European Commission,“Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability”. COM/2020/474 final (Brussels, 2020) 2021;

[42]. Pramanik, B. K., Asif, M. B., Kentish, S., Nghiem, L. D., & Hai, F. I. Lithium enrichment from a simulated Salt Lake brine using an integrated nanofiltration-membrane distillation process. Journal of Environmental Chemical Engineering 2019; 7(5), 103395.

[43]. Park, S. H., Kim, J. H., Moon, S. J., Jung, J. T., Wang, H. H., Ali, A., Lee, Y. M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. Journal of Membrane Science 2020; 598, 117683.

[44]. Zhang, Y., Wang, L., Sun, W., Hu, Y., & Tang, H. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. Journal of Industrial and Engineering Chemistry 2020; 81, 7-23.

[45]. Schäfer, A., Fane, A. G., & Waite, T. D. Nanofiltration: principles and applications 2005.

[46]. Sun, S. Y., Cai, L. J., Nie, X. Y., Song, X., & Yu, J. G. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. Journal of Water Process Engineering 2015; 7, 210-217.

[47]. Bi, Q., Zhang, Z., Zhao, C., & Tao, Z. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration. Water science and technology 2014; 70(10), 1690-1694.

[48]. Quist-Jensen, C. A., Macedonio, F., & Drioli, E. Membrane crystallization for salts recovery from brine—an experimental and theoretical analysis. Desalination and Water Treatment 2016; 57(16), 7593-7603.

[49]. Pramanik, B. K., Asif, M. B., Roychand, R., Shu, L., Jegatheesan, V., Bhuiyan, M., & Hai, F. I. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere 2020; 260, 127623.

[50]. Arroyo, F., Morillo, J., Usero, J., Rosado, D., & El Bakouri, H. Lithium recovery from desalination brines using specific ion-exchange resins. Desalination 2019; 468, 114073.

[51]. Li, X., Mo, Y., Qing, W., Shao, S., Tang, C. Y., & Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. Journal of Membrane Science 2019; 591, 117317.

[52]. Du, F., Warsinger, D. M., Urmi, T. I., Thiel, G. P., Kumar, A., & Lienhard V, J. H. Sodium hydroxide production from seawater desalination brine: process design and energy efficiency. Environmental science & technology 2018; 52(10), 5949-5958.

[53]. Figueira, M., Rodríguez-Jiménez, D., Lopez, J., Reig, M., Cortina, J. L., & Valderrama, C. Experimental and economic evaluation of nanofiltration as a pre-treatment for added-value elements recovery from seawater desalination brines. Desalination 2023; 549, 116321.

[54]. Wang, L., Rehman, D., Sun, P. F., Deshmukh, A., Zhang, L., Han, Q., Tang, C. Y. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Applied Materials & Interfaces 2021; 13(14), 16906-16915.

[55]. Seip, A., Safari, S., Pickup, D. M., Chadwick, A. V., Ramos, S., Velasco, C. A., Alessi, D. S. Lithium recovery from hydraulic fracturing flowback and produced water using a selective ion exchange sorbent. Chemical Engineering Journal 2021; 426, 130713.

[56]. Kurniawan, Y. S., Sathuluri, R. R., Ohto, K., Iwasaki, W., Kawakita, H., Morisada, S., & Miyazaki, M. A rapid and efficient lithium-ion recovery from seawater with tripropyl-monoacetic acid calix arene derivative employing droplet-based microreactor system. Separation and Purification Technology 2019; 211, 925-934.

[57]. Xu, X., Chen, Y., Wan, P., Gasem, K., Wang, K., He, T., Fan, M. Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science 2016; 84, 276-313.

[58]. Wei, S., Wei, Y., Chen, T., Liu, C., & Tang, Y. Porous lithium-ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chemical Engineering Journal 2020; 379, 122407.

[59]. Bajestani, M. B., Moheb, A., & Masigol, M. Simultaneous optimization of adsorption capacity and stability of hydrothermally synthesized spinel ion sieve composite adsorbents for selective removal of lithium from aqueous solutions. Industrial & Engineering Chemistry Research 2019; 58(27), 12207-12215.

[60]. Snydacker, D. H., Hegde, V. I., Aykol, M., & Wolverton, C. Computational discovery of Li–M–O ion exchange materials for lithium extraction from brines. Chemistry of Materials 2018; 30(20), 6961-6968.

[61]. Guo, Z. Y., Ji, Z. Y., Wang, J., Guo, X. F., & Liang, J. S. Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage. Desalination 2022; 533, 115767.

[62]. Ooi, K., Miyai, Y., & KATOH, S. Lithium-ion sieve property of λ; -type manganese oxide. Solvent Extraction and Ion Exchange 1987; 5(3), 561-572.

[63]. Chitrakar, R., Kanoh, H., Miyai, Y., & Ooi, K. Recovery of lithium from seawater using manganese oxide adsorbent (H1. 6Mn1. 6O4) derived from Li1. 6Mn1. 6O4. Industrial & engineering chemistry research 2001; 40(9), 2054-2058.

[64]. Darul, J., Nowicki, W., & Piszora, P. Unusual compressional behavior of lithium–manganese oxides: a case study of Li4Mn5O12. The Journal of Physical Chemistry C, 2012; 116(33), 17872-17879.

[65]. Moazeni, M., Hajipour, H., Askari, M., & Nusheh, M. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Materials Research Bulletin 2015; 61, 70-75.

[66]. Shi, K., Luo, M., Ying, J., Zhen, S., Xing, Z., & Chen, R. Extraction of lithium from single-crystalline lithium manganese oxide nanotubes using ammonium peroxodisulfate. Iscience 2020; 23(11).

[67]. Li, Y., Zhang, P., Xiong, J., Wei, Y., Chi, H., Zhang, Y., Deng, J. Facilitating catalytic purification of auto-exhaust carbon particles via the Fe2O3 {113} facet-dependent effect in Pt/Fe2O3 catalysts. Environmental Science & Technology 2021; 55(23), 16153-16162.

[68]. Gao, J. M., Du, Z., Zhao, Q., Guo, Y., & Cheng, F. Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm. Journal of Materials Research and Technology 2021; 13, 228-240.

[69]. Chen, S., Chen, Z., Wei, Z., Hu, J., Guo, Y., & Deng, T. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. Chemical Engineering Journal 2021; 410, 128320.

[70]. Ryu, T., Haldorai, Y., Rengaraj, A., Shin, J., Hong, H. J., Lee, G. W., Chung, K. S. Recovery of lithium ions from seawater using a continuous flow adsorption column packed with granulated chitosan–lithium manganese oxide. Industrial & Engineering Chemistry Research 2016; 55(26), 7218-7225.

[71]. Hong, H. J., Park, I. S., Ryu, T., Ryu, J., Kim, B. G., & Chung, K. S. Granulation of Li1. 33Mn1. 67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chemical engineering journal 2013; 234, 16-22.

[72]. Nisola, G. M., Limjuco, L. A., Vivas, E. L., Lawagon, C. P., Park, M. J., Shon, H. K., Chung, W. J. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation. Chemical Engineering Journal 2015; 280, 536-548.

[73]. Park, M. J., Nisola, G. M., Beltran, A. B., Torrejos, R. E. C., Seo, J. G., Lee, S. P., Chung, W. J. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate. Chemical Engineering Journal 2014; 254, 73-81.

[74]. Jia, Q., Wang, J., & Guo, R. Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption–desorption properties in brine. Journal of Porous Materials 2019; 26(3), 705-716.

[75]. Zhu, G., Wang, P., Qi, P., & Gao, C. Adsorption and desorption properties of Li+ on PVC-H1. 6Mn1. 6O4 lithium ion-sieve membrane. Chemical Engineering Journal 2014; 235, 340-348.

[76]. Li, J., Fan, W., Qin, W., Ma, C., Yan, L., Guo, Y., Deng, T. The regeneration process of FePO4 in electrochemical lithium extraction: The role of alkali ions. Chemical Engineering Journal 2024; 493, 152476.

[77]. Arslan, M., Acik, G., & Tasdelen, M. A. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polymer Chemistry 2019; 10(28), 3806-3821.

[78]. Kim, Y., Han, Y., Kim, S., & Jeon, H. S. Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. Process Safety and Environmental Protection 2021; 148, 765-774.

[79]. Gabra, G. G., Torma, A. E. Lithium chloride extraction by n-butanol. Hydrometallurgy 1978; 3(1), 23-33.

[80]. Bukowsky, H., Uhlemann, E. Selective extraction of lithium chloride from brines. Separation science and technology 1993; 28(6), 1357-1360. https://doi.org/10.1080/01496399308018042

[81]. Li, R., Wang, Y., Duan, W., Du, C., Tian, S., Ren, Z., Zhou, Z. Selective extraction of lithium ions from salt lake brines using a tributyl phosphate-sodium tetraphenyl boron-phenethyl isobutyrate system. Desalination 2023; 555, 116543. https://doi.org/10.1016/j.desal.2023.116543

[82]. Intaranont, N., Garcia-Araez, N., Hector, A. L., Milton, J. A., Owen, J. R. Selective lithium extraction from brines by chemical reaction with battery materials. Journal of Materials Chemistry A 2014; 2(18), 6374-6377.

[83]. Zhou, Z., Qin, W., Fei, W. Extraction equilibria of lithium with tributyl phosphate in three diluents. Journal of Chemical & Engineering Data 2011; 56(9), 3518-3522.

[84]. Seeley, F., & Baldwin, W. (1974). U.S. Patent No. 3,793,433. Washington, DC: U.S. Patent and Trademark Office.

[85]. Baldwin, W., & Seeley, F. (1974). Extraction of Lithium from Neutral Brines Using a Beta Diketone and Trioctylphosphine Oxide. Atomic Energy Commission.

[86]. Swain, B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. Journal of Chemical Technology & Biotechnology 2016; 91(10), 2549-2562.



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com