Published
2026-01-05
Section
Original Research Article
License
Copyright (c) 2026 Nagham Majid Abdulhassan*, Abdull Jabar Attia, Falah S. Al-Fartusie

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
One-pot synthesis of triazole and oxadiazoline derivatives from naproxen: A sustainable approach in green chemistry
Nagham Majid Abdulhassan
Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 10052, Iraq
Abdull Jabar Attia
Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 10052, Iraq
Falah S. Al-Fartusie
Chemistry Department, College of Science, Mustansiriyah University, Baghdad, 10052, Iraq
DOI: https://doi.org/10.59429/ace.v9i1.5820
Keywords: naproxen; triazole; oxdiazoline; One-Pot Synthesis; green chemistry; LD50, medicinal chemist
Abstract
This study presents a novel, one-pot synthetic strategy for preparing triazole and oxadiazoline derivatives directly from naproxen. This approach aligns with the principles of green chemistry, aiming to enhance synthetic efficiency by minimizing reaction steps and reducing waste. By eliminating the need for multiple isolation and purification stages, this method offers a sustainable alternative to conventional multi-step procedures. The synthesized compounds underwent structural confirmation using a suite of spectroscopic techniques, specifically Fourier-Transform Infrared spectroscopy, Proton Nuclear Magnetic Resonance spectroscopy, and Carbon-13 Nuclear Magnetic Resonance spectroscopy and CNMR dept 135 and CNMR dept 90. Further analysis supported their potential as anti-inflammatory agents through molecular docking studies. These studies demonstrated strong binding affinities of the compounds to the cyclooxygenase-2 (COX-2) enzyme, suggesting a favorable mechanism of action for anti-inflammatory activity. Additionally, their acute toxicity was assessed by determining the LD50 values, providing preliminary data on their safety profile. Collectively, the new derivatives exhibited promising multi-target activity. The synthesized compounds exhibit potent broad-spectrum antimicrobial effects, demonstrating significant efficacy against both “Gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis”, and “Gram-negative bacteria, including Klebsiella species and Escherichia coli. Furthermore, they show promising antifungal activity against the pathogenic yeast Candida albicans”. This research demonstrates that a sustainable, one-pot synthesis can efficiently generate new compounds with valuable biological properties. Sustained-release naproxen derivatives show significant potential for future development in medicinal chemistry. This work highlights the constructive collaboration between green chemistry principles and the discovery of novel therapeutic agents.
References
[1]. Campana, F.; Maselli, A.; Falcini, C.; Selvi, A.; Piermatti, O.; Vaccaro, L. Waste-minimized one-pot synthesis of azido- or triazole-pyrazolines using polar clean as a reaction medium. Sustainable Chemistry and Pharmacy 2024, 40, 101632.
[2]. A. El-Sayed, H.; M. El-Hashash, M.; E. Ahmed, A. Novel Synthesis, Ring Transformation, and Anticancer Activity of 1,3-Thiazine, Pyrimidine, and Triazolo[1,5-a]pyrimidine Derivatives. Bull. Chem. Soc. Eth. 2018, 32, 513-522.
[3]. Gholami, M.; Imanzadeh, G.; Kabiri Esfahani, F.; Karami-Zarandi, M.; Soltanzadeh, Z.; Şahin, E. Facile and one-pot synthesis of novel N-alkylated derivatives of S-lactic hydrazones under green conditions and study of their antibacterial properties. Green Chem. Lett. Rev. 2025, 18 (1), 2541057.
[4]. Godinho, P. I.; Soengas, R. G.; Silva, A. M. Applying the Principles of Green Chemistry to Cyclopropanation. Synthesis 2025, 57 (11), 1769-1790.
[5]. D'Amico, F. Green chemistry approaches catalytic organometallic processes and application to photovoltaic materials design 2025.
[6]. Chiang, P.-C.; Wang, Y.-H.; Su, Z.-Y.; Wang, J.-H.; Lin, H.-H.; Chang, C.-Y.; Hsieh, P.-C.; Tsai, P.-C. Application of Green Chemistry Principles to Green Economy. In Introduction to Green Science and Technology for Green Economy: Principles and Applications; Springer Nature Singapore: Singapore, 2024; pp 287-333. Banik, B. (Ed.). (2024). Green Approaches in Medicinal Chemistry for Sustainable Drug Design: Applications (Vol. 1). Elsevier.
[7]. Martinengo, B.; Diamanti, E.; Uliassi, E.; Bolognesi, M. L. Harnessing the twelve green chemistry principles for sustainable antiparasitic drugs: toward the One Health approach. ACS Infect. Dis. 2024, 10 (6), 1856–1870.
[8]. Saravanan, V.; Banerjee, S.; Muthukumaradoss, K.; Deivasigamani, P.; Periyasamy, S. Revolutionizing organic synthesis through green chemistry: metal-free, bio-based, and microwave-assisted methods. Front. Chem. 2025, 13, 1656935.
[9]. Al-Qahtani, S. D.; Al-Senani, G. M.; Attia, Y. A. Green synthesis of nano Cu₂O for one-pot photocatalytic production of vitamin B₃. Res. Chem. Intermed. 2025, 51, 1–16.
[10]. Szekely, G. The twelve principles of green membrane materials and processes for realizing the United Nations' sustainable development goals. RSC Sustainability 2024, 2 (4), 871–880.
[11]. Pawar, D. D.; Timble, A. N.; Thorat, M. B.; More, K. S.; Gadkari, Y. U. Green and Efficient One‐Pot Synthesis of 1, 3‐Diaryl‐3‐arylamino‐propan‐1‐one Derivatives Using Thiamine Hydrochloride as a Catalyst. Chem. Sel. 2025, 10 (12), e202405766.
[12]. Ogodo, U. P.; Abosede, O. O. The role of chemistry in achieving sustainable development goals: A green chemistry perspective. Int. Res. J. Pure Appl. Chem. 2025, 26 (1), 1–8.
[13]. Vaishnani, M. J.; Bijani, S.; Rahamathulla, M.; Baldaniya, L.; Jain, V.; Thajudeen, K. Y.; et al. Biological importance and synthesis of 1, 2, 3-triazole derivatives: A review. Green Chem. Lett. Rev. 2024, 17 (1), 2307989.
[14]. Mustafa, H.; Daud, S.; Sheraz, S.; Bibi, M.; Ahmad, T.; Sardar, A.; et al. Chemistry and Bioactivity of Mefenamic Acid Derivatives: A Review of Recent Advances. Arch. Pharm. 2025, 358 (5), e70004.
[15]. Yazdanseta, S.; Ghanbari, M. One-pot synthesis of novel 5-(azidomethyl)-2-aryloxazole derivatives from propargylamide through Cu-catalyzed C–N bond formation. J. Iran. Chem. Soc. 2025, 22 (3), 535–544.
[16]. Bhardwaj, A.; Jaiswal, S.; Verma, K.; Bhardwaj, K.; Sharma, M.; Jain, S.; et al. Green Synthesis and Biological Aspect of Seven‐Membered Azepine Hybrids: A Recent Update.” Chem. Rec. 2025, 25 (3), e202400156.
[17]. Zhan, J. L.; Yuan, S. L.; Wei, J. S.; Zhang, M. S.; Yuan, Z. Y.; Wei, Y.; et al. Ring-Opening α, β-Difunctionalization of Cyclopropanols with Azides Enables 4-Keto-Functionalized 1, 2, 3-Triazole Synthesis. Org. Lett. 2024, 26 (44), 9553–9557.
[18]. Ivanov, I.; Manolov, S.; Bojilov, D.; Stremski, Y.; Marc, G.; Statkova-Abeghe, S.; et al. Synthesis of Novel Benzothiazole–Proven Hybrid Amides as Potential NSAID Candidates. Molecules 2024, 30 (1), 107.
[19]. Templ, J.; Borchardt, L. Mechanochemical Strategies Applied to the Late‐Stage Modifications of Pharmaceutically Active Compounds. Angew. Chem. Int. Ed. 2025, e202503061.
[20]. Osman, A. I.; Chen, Z.; Elgarahy, A. M.; Farghali, M.; Mohamed, I. M.; Priya, A. K.; et al. Membrane technology for energy-saving principles, techniques, applications, challenges, and prospects. Adv. Energy Sustainability Res. 2024, 5 (5), 2400011.
[21]. dos Santos, K. A.; de Carvalho Moreira, L. M. C.; Soares-Sobrinho, J. L.; Soares, M. F. D. L. R. New horizons in antiretroviral drug delivery systems for HIV management. Curr. Med. Chem. 2025, 32 (21), 4192–4224.
[22]. Mallappa; Chahar, M.; Choudhary, N.; Yadav, K. K.; Qasim, M. T.; Zairov, R.; et al. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: a review. J. Iran. Chem. Soc. 2025, 22 (1), 1–33.
[23]. El-Saghier, A. M.; Enaili, S. S.; Abdou, A.; Hamed, A. M.; Kadry, A. M. Synthesis, docking, and biological evaluation of purine-5-N-isosteres as anti-inflammatory agents. RSC Adv. 2024, 14 (25), 17785–17800.
[24]. Furlong, A. J.; Bond, N. K.; Champagne, S.; Haelssig, J. B.; Symonds, R. T.; Hughes, R. W.; et al. Process Safety Considerations in the Design and Scale-Up of Chemical Looping Processes. Ind. Eng. Chem. Res. 2025.
[25]. Vaz, C. R. S.; Morais, C.; Pastre, J. C.; Júnior, G. G. Teaching Green Chemistry in Higher Education: Contributions to a Problem-Based Learning Proposal for Understanding the Principles of Green Chemistry. Sustainability 2025, 17 (5), 2004.
[26]. Elkanzi, N. A.; Ali, A. M.; Abdelaziz, M. A.; Alishan, A. M. Green synthesis, anti-inflammatory evaluation, and molecular docking of novel pyridines via one-pot multi-component reaction using ultrasonic irradiation. Mol. Divers. 2024, 28, 1–11.
[27]. Vishwakarma, D.; Gupta, S. P. Synthesis, Anti-inflammatory, and in silico Studies of a Few Novel 1, 2, 4-Triazole-Derived Schiff Base Compounds. Indian J. Pharm. Educ. Res. 2024, 58 (4), 1235–1241.
[28]. Paggi, J. M.; Pandit, A.; Dror, R. O. The art and science of molecular docking. Annu. Rev. Biochem. 2024, 93 (1), 389–410.
[29]. Siddiqui, B.; Yadav, C. S.; Akil, M.; Faiyyaz, M.; Khan, A. R.; Ahmad, N.; et al. Artificial intelligence in computer-aided drug design (CADD) tools for the finding of potent biologically active small molecules: Traditional to modern approach. Comb. Chem. High Throughput Screening 2025.
[30]. Ajmal, M., Mahato, A. K., Khan, M., Rawat, S., Husain, A., Almalki, E. B., ... & Rashid, M. Significance of Triazole in medicinal chemistry: advancement in drug design, reward, and biological activity. Chemistry & Biodiversity, (2024). 21(7), e202400637.
[31]. Sahu, M. K.; Nayak, A. K.; Hailemeskel, B.; Eyupoglu, O. E. Exploring recent updates on molecular docking: Types, method, application, limitation & prospects. Int. J. Pharm. Res. Allied Sci. 2024, 13 (2), 24–40.
[32]. Mursal, M.; Ahmad, M.; Hussain, S.; Khan, M. F. Navigating the computational seas: a comprehensive overview of molecular docking software in drug discovery. In Unravelling Molecular Docking—From Theory to Practice; IntechOpen, 2024.
[33]. Wu, K.; Karapetyan, E.; Schloss, J.; Vadgama, J.; Wu, Y. Advancements in small molecule drug design: A structural perspective. Drug Discovery Today 2023, 28 (10), 103730.
[34]. Awad, M. A.; Hammad, S. F.; El-Mashtoly, S. F.; El-Deeb, B.; Soliman, H. S. Phytochemical and biological assessment of secondary metabolites isolated from a rhizosphere strain, Sphingomonas sanguinis DM, of Datura metal. BMC Complement. Med. There. 2024, 24 (1), 205.
[35]. Huang, X.; Li, C.; Zhang, C.; Xiang, Y.; Yu, Z.; Li, P.; et al. Repurposing Etalocib suppresses multidrug-resistant Staphylococcus aureus by disrupting the bacterial membrane. BMC Microbiol. 2025, 25 (1), 472.
[36]. Olaiya, V. O. A Study on Antibiotic Susceptibility Pattern of DNase Positive Staphylococci Isolated from Selected Libraries of Halls of Residence in Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. medRxiv 2025.
[37]. Dutta, B.; Das, U.; Ltu, S.; Ghosh, S.; Ray, R. R. Bacteriocin-Mediated Silver Nanoconjugate: Synthesis, Characterization, and Application as an Antibiofilm Agent Against Two Common Pathogenic Bacteria. Probiotic Antimicrob. Proteins 2025, 17, 1–20.
[38]. La Monica, G.; Gallo, A.; Bono, A.; Alamia, F.; Lauria, A.; Alduina, R.; Martorana, A. Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against Staphylococcus aureus: Design, Synthesis, and In Vitro and In Silico Insights. Molecules 2024, 30 (1), 28.
[39]. Asaftei, M.; Lucidi, M.; Anton, S. R.; Trompeta, A. F.; Hristu, R.; Tranca, D. E.; et al. Antibacterial interactions of ethanol-dispersed multiwalled carbon nanotubes with Staphylococcus aureus and Pseudomonas aeruginosa. ACS Omega 2024, 9 (31), 33751–33764.
[40]. Kader, D. A.; Aziz, D. M.; Mohammed, S. J.; Maarof, N. N.; Karim, W. O.; Mohamad, S. A.; et al. Green synthesis of ZnO/catechin nanocomposite: Comprehensive characterization, optical study, computational analysis, biological applications, and molecular docking. Mater. Chem. Phys. 2024, 319, 129408.
[41]. Oberbauer, V.; Mutti, M.; Schwebs, T.; Durica-Mitic, S.; Visram, Z.; Kestemont, D.; et al. Discovery of potent endolysins against Pseudomonas aeruginosa and other gram-negative ESKAPE pathogens by an agar-based screening method. Sci. Rep. 2025, 15 (1), 29351.
[42]. Breijyeh, Z.; Karaman, R. Design and synthesis of novel antimicrobial agents. Antibiotics 2023, 12 (3), 628.
[43]. Mohammed, I. A.; Al-Assafe, A. Y.; Fathi, A. A. Bull. Chem. Soc. Ethiop. 2025, 39, 841–857.
[44]. Synthesis, structural characterization, and biological activity of novel Schiff-base complexes incorporating... Bull. Chem. Soc. Ethiop. 2024, 38 (2), 325-346.
[45]. Rafiq, M. A.; Shahid, M.; Jilani, K.; Aslam, M. A. Antibacterial, antibiofilm, and anti-quorum sensing potential of novel synthetic compounds against pathogenic bacteria isolated from chronic sinusitis patients. Dose-Response 2022, 20 (4), 15593258221135731.
[46]. Flores, D.; Jerves, C. Computational Comparison of the Binding Affinity of Selective and Nonselective NSAIDs to COX-2 Using Molecular Docking. Bionatura J 2025, 2 (3).
[47]. Bello-Vargas, E.; Leyva-Peralta, M. A.; Gómez-Sandoval, Z.; Ordóñez, M.; Razo-Hernández, R. S. A computational method for the binding mode prediction of COX-1 and COX-2 inhibitors: analyzing the union of coxibs, oxicams, and propionic and acetic acids. Pharmaceuticals 2023, 16 (12), 1688.
[48]. Nagham Majid Abdulhassan; Abdul Jabar Kh. Atia; Falah S. Al-Fartusie. Design, Synthesis, and in Vitro Biological Activity of Five- and Six-Membered Heterocycles Naproxen Derivatives. Appl. Chem. Eng. 2025, 8, ACE-5740.
[49]. Hameed, A. N., Atia, A. J. K., & Al Jorani, K. R. Synthesis and Biological Activity of New Heterocyclic Compounds Derived From N-Benzoylthioimidazolidin-4-one. Solid State Technology, (2020) 63(6), 1080-10821
[50]. Dadoosh SA, Mahdi MF, Atia AJK. Synthesis, characterization, and antibacterial study of some imidazole and molecular docking of new heterocyclics from furan derivatives. Journal of Biochemical Technology. 2019; 10(4-2019): 76-81
[51]. Abdulnabi AA, Ali KF, Abd Razik BM. Synthesis, Characterization, ADME Study, and Antimicrobial Evaluation of New 1, 2, 3-Triazole Derivatives of 2-Phenyl Benzimidazole. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2023; 23(2): 147-57.








