Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 8 No. 4(Publishing) > Original Research Article
ACE-5826

Published

2025-12-17

Issue

Vol. 8 No. 4(Publishing)

Section

Original Research Article

License

Copyright (c) 2025 S. Manjula Gandhi, S. Sugumaran, N. Alangudi Balaji, Govindarajan Murali, Amruta Kundalik Mule, Harish Velingkar, Anant Sidhappa Kurhade, Muralidhar Ingale

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

S. Manjula Gandhi, S. Sugumaran, N. Alangudi Balaji, Govindarajan Murali, Amruta Kundalik Mule, Harish Velingkar, … Muralidhar Ingale. (2025). Artificial Intelligence in Predictive Toxicology: Modelling Xenobiotic Interactions and Human Risk Assessment. Applied Chemical Engineering, 8(4), ACE-5826. https://doi.org/10.59429/ace.v8i4.5826
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Artificial Intelligence in Predictive Toxicology: Modelling Xenobiotic Interactions and Human Risk Assessment

S. Manjula Gandhi

Department of Computing (Software Systems), Coimbatore Institute of Technology, Civil Aerodrome Post, Avinashi Road, Peelamedu, Coimbatore – 641014, Tamil Nadu, India

S. Sugumaran

Department of Electronics and Communication Engineering, Vishnu Institute of Technology, Bhimavaram - 534202, Andhra Pradesh, India

N. Alangudi Balaji

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur - 522502, Andhra Pradesh, India

Govindarajan Murali

Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur - 522502, Andhra Pradesh, India

Amruta Kundalik Mule

Department of Engineering Mathematics, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India

Harish Velingkar

Department of Electronics & Communications Engineering, Agnel Institute of Technology & Design, Assagao, Goa - 403507.

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India

Muralidhar Ingale

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune - 411018, Maharashtra, India


DOI: https://doi.org/10.59429/ace.v8i4.5826


Keywords: Artificial Intelligence, Predictive Toxicology; Xenobiotic Interactions; Machine Learning; Human Risk Assessment; SDG 3, SDG12, SDG13


Abstract

Development of novel, rapid and robust approaches to toxicity screening has been accelerated by the expanding diversity of xenobiotics in pharmaceuticals, agriculture and industrial processes. The classical animal-based in vivo approach is slow, expensive and ethically restricted, thus stimulating the interest in the application of artificial intelligence (AI) as a data-powered technique to predict chemical hazards. Recent advances, challenges, and opportunities in this regard are reviewed here, focusing on achievements in machine learning (ML), deep learning (DL), quantitative structure–activity relationship (QSAR) modelling, omics-supported toxicity prediction, and the integration of these with physiologically based pharmacokinetic (PBPK) models. AI approaches can predict hepatotoxicity, carcinogenicity, endocrine disruption and multi-endpoint toxicity through high-dimensional chemical, biological and exposure data analysis. The use of these new tools to make predictions about the impact of chemical exposure in humans, using AI assisted PBPK modelling and toxicodynamic prediction can potentially assist risk assessors by increasing the accuracy with which internal dose may be predicted, allow for detection of vulnerable subpopulations or simply move us to a position where we are making decisions on data that puts prevention more proactively into action. The review also discusses present challenges with respect to data imbalance, low interpretability and variable data curation which hinder regulatory approval. Top emerging opportunities, including explainable AI, digital twins, and federated learning, have the potential to develop transparent, generalizable, and ethically aligned toxicological frameworks. By translating methodological improvements to real-world challenges, this review adds input to the global picture for safer chemical design and sustainable risk governance progress, with support of SDG 3 (Good Health and Well-Being), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action).


References

[1]. Härtung T. ToxAIcology - The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX. 2023;559. https://doi.org/10.14573/altex.2309191

[2]. Tran TTV, Tayara H, Chong KT. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics. 2023;15(4):1260. https://doi.org/10.3390/pharmaceutics15041260

[3]. Härtung T. Artificial intelligence as the new frontier in chemical risk assessment. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1269932

[4]. Sheng Q, Liu B, Wang X, Hua L, Zhao S, Sun X, Li M, Zhang X, Wang JX, Hu PJ. Revolutionizing toxicological risk assessment: integrative advances in new approach methodologies (NAMs) and precision toxicology. Archives of Toxicology. 2025. https://doi.org/10.1007/s00204-025-04169-y

[5]. Basile AO, Yahi A, Tatonetti NP. Artificial Intelligence for Drug Toxicity and Safety. Trends in Pharmacological Sciences. 2019;40(9):624. https://doi.org/10.1016/j.tips.2019.07.005

[6]. Zhang R, Wen H, Lin Z, Li B, Zhou X. Artificial Intelligence-Driven Drug Toxicity Prediction: Advances, Challenges, and Future Directions. Toxics. 2025;13(7):525. https://doi.org/10.3390/toxics13070525

[7]. Bai C, Wu L, Li R, Cao Y, He S, Bo X. Machine Learning‐Enabled Drug‐Induced Toxicity Prediction. Advanced Science. 2025. https://doi.org/10.1002/advs.202413405

[8]. Jang I. Artificial intelligence in drug development: clinical pharmacologist perspective. Translational and Clinical Pharmacology. 2019;27(3):87. https://doi.org/10.12793/tcp.2019.27.3.87

[9]. Tran TTV, Wibowo AS, Tayara H, Chong KT. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. Journal of Chemical Information and Modeling. 2023;63(9):2628. https://doi.org/10.1021/acs.jcim.3c00200

[10]. Tonoyan L, Siraki AG. Machine learning in toxicological sciences: opportunities for assessing drug toxicity. Frontiers in Drug Discovery. 2024;4. https://doi.org/10.3389/fddsv.2024.1336025

[11]. Khan MK, Raza MA, Shahbaz M, Hussain I, Khan MF, Xie Z, Shah SSA, Tareen AK, Bashir Z, Khan K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Frontiers in Chemistry. 2024;12. https://doi.org/10.3389/fchem.2024.1408740

[12]. Ananikov VP. Top 20 influential AI-based technologies in chemistry. Artificial Intelligence Chemistry. 2024;2(2):100075. https://doi.org/10.1016/j.aichem.2024.100075

[13]. Kant S, Deepika D, Roy SC. Artificial intelligence in drug discovery and development: transforming challenges into opportunities. 2025;1(1). https://doi.org/10.1007/s44395-025-00007-3

[14]. Lee H, Kim J, Kim J, Lee Y. Recent advances in AI-based toxicity prediction for drug discovery. PubMed. 2025;13:1632046. https://pubmed.ncbi.nlm.nih.gov/40698059

[15]. Alam F, Alnazzawi TSM, Mehmood R, Almaghthawi A. A review of the applications, benefits, and challenges of generative AI for sustainable toxicology. Current Research in Toxicology. 2025;100232. https://doi.org/10.1016/j.crtox.2025.100232

[16]. Setiya A, Jani V, Sonavane U, Joshi R. MolToxPred: small molecule toxicity prediction using machine learning approach. RSC Advances. 2024;14(6):4201. https://doi.org/10.1039/d3ra07322j

[17]. Zhang J, Li H, Zhang Y, Huang J, Ren L, Zhang C, Zou Q, Zhang Y. Computational toxicology in drug discovery: applications of artificial intelligence in ADMET and toxicity prediction. PubMed. 2025;26(5). https://pubmed.ncbi.nlm.nih.gov/41052279

[18]. Bueso-Bordils JI, Antón-Fos GM, Martín-Algarra R, Aleman P. Overview of computational toxicology methods applied in drug and green chemical discovery. Journal of Xenobiotics. 2024;14(4):1901. https://doi.org/10.3390/jox14040101

[19]. Masarone S, Beckwith KVV, Wilkinson M, Tuli S, Lane A, Windsor S, Lane J, Hosseini-Gerami L. Advancing predictive toxicology: overcoming hurdles and shaping the future. Digital Discovery. 2024. https://doi.org/10.1039/d4dd00257a

[20]. Vora LK, Gholap AD, Jetha K, Singh TRR, Solanki HK, Chavda VP. Artificial Intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. https://doi.org/10.3390/pharmaceutics15071916

[21]. Gangwal A, Lavecchia A. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discovery Today. 2025;104360. https://doi.org/10.1016/j.drudis.2025.104360

[22]. Maertens A, Luechtefeld T, Knight J, Härtung T. Alternative methods go green! Green toxicology as a sustainable approach for assessing chemical safety and designing safer chemicals. ALTEX. 2024;41(1). https://doi.org/10.14573/altex.2312291

[23]. Noorden RV. Software beats animal tests at predicting toxicity of chemicals. Nature. 2018;559:163. https://doi.org/10.1038/d41586-018-05664-2

[24]. Morger A, Mathea M, Achenbach J, Wolf A, Buesen R, Schleifer KJ, Landsiedel R, Volkamer A. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. Journal of Cheminformatics. 2020;12(1). https://doi.org/10.1186/s13321-020-00422-x

[25]. Li Y, Gu T, Yang C, Li M, Wang C, Yao L, Gu W, Sun D. AI-Assisted Hypothesis Generation to Address Challenges in Cardiotoxicity Research: Simulation Study Using ChatGPT With GPT-4o. Journal of Medical Internet Research. 2025;27. https://doi.org/10.2196/66161

[26]. Wang EY, Zhao Y, Okhovatian S, Smith J, Radisic M. Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis. Frontiers in Bioengineering and Biotechnology. 2022;10. https://doi.org/10.3389/fbioe.2022.1005051

[27]. Yeung VPWA, Obrezanova O, Zhou J, Yang H, Bowen TJ, Ivanov DP, et al. Computational approaches identify a transcriptomic fingerprint of drug-induced structural cardiotoxicity. Cell Biology and Toxicology. 2024;40(1). https://doi.org/10.1007/s10565-024-09880-7

[28]. Maertens A, Antignac E, Benfenati E, Bloch D, Fritsche E, Hoffmann S, et al. The probable future of toxicology - probabilistic risk assessment. ALTEX. 2024. https://doi.org/10.14573/altex.2310301

[29]. Allen TEH, Wedlake AJ, Gelžinytė E, Gong C, Goodman JM, Gutsell S, Russell P. Neural network activation similarity: a new measure to assist decision making in chemical toxicology. Chemical Science. 2020;11(28):7335. https://doi.org/10.1039/d0sc01637c

[30]. Petersen MA, Ramhøj L, Scholze M, Köhrle J, Kortenkamp A. One size does not fit all in thyroid disruption: distinct thyroid hormone profiles and adverse outcomes after developmental exposure to PTU, DE-71 and OMC. Research Portal Denmark. 2020;114.

[31]. Allen CHG, Mervin L, Mahmoud S, Bender A. Leveraging heterogeneous data from GHS toxicity annotations, molecular and protein target descriptors and Tox21 assay readouts to predict and rationalise acute toxicity. Journal of Cheminformatics. 2019;11(1). https://doi.org/10.1186/s13321-019-0356-5

[32]. Liu J, Patlewicz G, Williams A, Thomas RS, Shah I. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Chemical Research in Toxicology. 2017;30(11):2046. https://doi.org/10.1021/acs.chemrestox.7b00084

[33]. Zhang J, Mucs D, Norinder U, Svensson F. LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity – Application to the Tox21 and Mutagenicity Data Sets. Journal of Chemical Information and Modeling. 2019;59(10):4150. https://doi.org/10.1021/acs.jcim.9b00633

[34]. Gadaleta D, Vuković K, Toma C, Lavado GJ, Karmaus AL, Mansouri K, Kleinstreuer N, Benfenati E, Roncaglioni A. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. Journal of Cheminformatics. 2019;11(1). https://doi.org/10.1186/s13321-019-0383-2

[35]. Wang Z, Wen H, Su Y, Shen W, Ren J, Ma Y, Li J. Insights into ensemble learning-based data-driven model for safety-related property of chemical substances. Chemical Engineering Science. 2021;248:117219. https://doi.org/10.1016/j.ces.2021.117219

[36]. Arulanandam CD, Hwang J, James RA, Dahms H. Evaluating different web applications to assess the toxicity of plasticizers. Scientific Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-18327-0

[37]. Feng H, Zhang L, Li S, Liu L, Yang T, Yang P, Zhao J, Arkin IT, Liu H. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Toxicology Letters. 2021;340:4. https://doi.org/10.1016/j.toxlet.2021.01.002

[38]. Mostafa F, Chen M. Computational models for predicting liver toxicity in the deep learning era. Frontiers in Toxicology. 2024;5. https://doi.org/10.3389/ftox.2023.1340860

[39]. Nendza M, Scheringer M, Strempel S, et al. Integrated testing strategies (ITS) for bioaccumulation. Research Portal Denmark. 2011.

[40]. Hong J, Kwon H. Multimodal deep learning for chemical toxicity prediction and management. Scientific Reports. 2025;15(1). https://doi.org/10.1038/s41598-025-95720-5

[41]. Zaslavskiy M, Jégou S, Tramel EW, Wainrib G. ToxicBlend: Virtual screening of toxic compounds with ensemble predictors. Computational Toxicology. 2019;10:81. https://doi.org/10.1016/j.comtox.2019.01.001

[42]. Klambauer G, Unterthiner T, Mayr A, Hochreiter S. DeepTox: Toxicity prediction using deep learning. Toxicology Letters. 2017;280. https://doi.org/10.1016/j.toxlet.2017.07.175

[43]. Matsuzaka Y, Uesawa Y. Computational models that use a quantitative structure–activity relationship approach based on deep learning. Processes. 2023;11(4):1296. https://doi.org/10.3390/pr11041296

[44]. Zhang J, Norinder U, Svensson F. Deep learning-based conformal prediction of toxicity. Journal of Chemical Information and Modeling. 2021;61(6):2648. https://doi.org/10.1021/acs.jcim.1c00208

[45]. Chen J, Si Y, Un CW, Siu SWI. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network. Journal of Cheminformatics. 2021;13(1). https://doi.org/10.1186/s13321-021-00570-8

[46]. Weber JK, Morrone JA, Bagchi S, Pabon JDE, Kang SG, Zhang L, Cornell WD. Simplified, interpretable graph convolutional neural networks for small molecule activity prediction. Journal of Computer-Aided Molecular Design. 2021;36(5):391. https://doi.org/10.1007/s10822-021-00421-6

[47]. Born J, Markert G, Janakarajan N, Kimber TB, Volkamer A, Martínez MR, Manica M. Chemical representation learning for toxicity prediction. Digital Discovery. 2023;2(3):674. https://doi.org/10.1039/d2dd00099g

[48]. Communication Papers of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS). Annals of Computer Science and Information Systems. 2024;41. https://doi.org/10.15439/978-83-973291-0-2

[49]. Yang X, Sun J, Jin B, Lu Y, Cheng J, Jiang J, Zhao Q, Shuai J. Multi-task aquatic toxicity prediction model based on multi-level features fusion. Journal of Advanced Research. 2024. https://doi.org/10.1016/j.jare.2024.06.002

[50]. Jolliet O, Huang L, Chiu WH, Isaacs K, Stylianou KS, Fantke P. Stochastic high throughput modeling of human exposure to chemicals in consumer products. Research Portal Denmark. 2019;72.

[51]. Gustavsson M, Käll S, Svedberg P, Inda-Díaz JS, Molander S, Coria J, Backhaus T, Kristiansson E. Transformers enable accurate prediction of acute and chronic chemical toxicity in aquatic organisms. Science Advances. 2024;10(10). https://doi.org/10.1126/sciadv.adk6669

[52]. Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: Are we there yet? Annual Review of Pharmacology and Toxicology. 2023;64(1):527. https://doi.org/10.1146/annurev-pharmtox-040323-040828

[53]. Arturi K, Harris EJ, Gasser L, Escher BI, Bosshard R, Hollender J. MLinvitroTox reloaded for high-throughput hazard-based prioritization of high-resolution mass spectrometry data. Research Square. 2024. https://doi.org/10.21203/rs.3.rs-5010617/v1

[54]. Allen TEH, Wedlake AJ, Grayson MN, Middleton A, Folia MM, Baltazar MT, Piechota P, Gelžinytė E, Goodman JM, Russell P, Kukić P, Gutsell S. Use of chemical informatics, quantum chemistry modelling and artificial intelligence algorithms to predict molecular initiating events. Toxicology Letters. 2021;350. https://doi.org/10.1016/s0378-4274(21)00274-5

[55]. Arturi K, Harris EJ, Gasser L, Escher BI, Braun G, Bosshard R, Hollender J. MLinvitroTox reloaded for high-throughput hazard-based prioritization of high-resolution mass spectrometry data. Journal of Cheminformatics. 2025;17(1). https://doi.org/10.1186/s13321-025-00950-4

[56]. Borries K von, Holmquist H, Kosnik MB, Beckwith KV, Jolliet O, Goodman JM, Fantke P. Potential for machine learning to address data gaps in human toxicity and ecotoxicity characterization. Environmental Science & Technology. 2023;57(46):18259. https://doi.org/10.1021/acs.est.3c05300

[57]. Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood C, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. Frontiers in Toxicology. 2024;6. https://doi.org/10.3389/ftox.2024.1461587

[58]. Coburg E von, Dunst S. The adverse outcome pathway for breast cancer: a knowledge management framework bridging biomedicine and toxicology. Discover Oncology. 2023;14(1). https://doi.org/10.1007/s12672-023-00840-x

[59]. Chen J, Lin A, Luo P. Advancing pharmaceutical research: a comprehensive review of cutting-edge tools and technologies. Current Pharmaceutical Analysis. 2024;21(1):1. https://doi.org/10.1016/j.cpan.2024.11.001

[60]. Harrill J, Shah I, Setzer RW, Haggard DE, Auerbach SS, Judson R, Thomas RS. Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology. 2019;15:64. https://doi.org/10.1016/j.cotox.2019.05.004

[61]. Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos MS, Zhao T, Austin CP, Simeonov A. Modelling the Tox21 10K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nature Communications. 2016;7(1). https://doi.org/10.1038/ncomms10425

[62]. El‐Masri H, Friedman KP, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicology and Applied Pharmacology. 2022;450:116141. https://doi.org/10.1016/j.taap.2022.116141

[63]. Chou W, Lin Z. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicological Sciences. 2022;191(1):1. https://doi.org/10.1093/toxsci/kfac101

[64]. Deepika D, Kumar V. The role of physiologically based pharmacokinetic model (PBPK) new approach methodology (NAM) in pharmaceuticals and environmental chemical risk assessment. International Journal of Environmental Research and Public Health. 2023;20(4):3473. https://doi.org/10.3390/ijerph20043473

[65]. Kattamreddy AR, Chinnam H. The future of large language models in toxicological risk assessment: opportunities and challenges. Public Health Toxicology. 2025;5(1):1. https://doi.org/10.18332/pht/202241

[66]. Ramhøj L, Kortenkamp A, Scholze M, Svingen T, Köhrle J, Petersen MA. Perinatal exposure to propylthiouracil (PTU), but not DE-71, induces heterotopia in the brain despite similar effects on serum T4 levels. Research Portal Denmark. 2020;118.

[67]. Volf M, Vučemilović A, Dobrović Ž. Enhancing environmental and human health management through the integration of advanced revitalization technologies utilizing artificial intelligence. Toxics. 2024;12(12):847. https://doi.org/10.3390/toxics12120847

[68]. Habiballah S, Heath LS, Reisfeld B. A deep-learning approach for identifying prospective chemical hazards. Toxicology. 2023;501:153708. https://doi.org/10.1016/j.tox.2023.153708

[69]. Kurhade AS, Gadekar T, Siraskar GD, Jawalkar SS, Biradar R, Kadam AA, Yadav RS, Dalvi SA, Waware SY, Mali CN. Thermal performance analysis of electronic components on different substrate materials. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45569

[70]. Kurhade AS, Siraskar GD, Jawalkar SS, Gadekar T, Bhambare PS, Biradar R, Yadav RS, Waware SY, Mali CN. The impact of circular holes in twisted tape inserts on forced convection heat transfer. J Mines Met Fuels. 2024 Oct 16;72(9):1005-12. https://doi.org/10.18311/jmmf/2024/45505

[71]. Kurhade AS, Bhambare PS, Desai VP, Murali G, Yadav RS, Patil P, Gadekar T, Biradar R, Kirpekar S, Charwad GA, Waware SY. Investigating the effect of heat transfer influenced by wavy corrugated twisted tape inserts in double pipe heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;122:146-55. https://doi.org/10.37934/arfmts.122.2.146155

[72]. Kurhade AS, Murali G, Jadhav PA, Bhambare PS, Waware SY, Gadekar T, Yadav RS, Biradar R, Patil P. Performance analysis of corrugated twisted tape inserts for heat transfer augmentation. J Adv Res Fluid Mech Therm Sci. 2024;121(2):192-200. https://doi.org/10.37934/arfmts.121.2.192200

[73]. Yadav RS, Nimbalkar A, Gadekar T, Patil P, Patil VN, Gholap AB, Kurhade AS, Dhumal JR, Waware SY. Comparison of experimental and numerical investigation of mono-composite and metal leaf spring. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45325

[74]. Kurhade AS, Warke P, Maniyar K, Bhambare PS, Waware SY, Deshpande S, Harsur S, Ingle M, Kolhe P, Patil PA, Jadhav P. Wind rose analysis of temperature variation with sensor implantation technique for wind turbine. J Adv Res Fluid Mech Therm Sci. 2024;122(1):1-8. https://doi.org/10.37934/arfmts.122.1.118

[75]. Kurhade AS, Siraskar GD, Bhambare PS, Kaithari DK, Dixit SM, Waware SY. Enhancing smartphone circuit cooling: a computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132-45. https://doi.org/10.37934/arnht.27.1.132145

[76]. Kurhade AS, Darade MM, Siraskar GD, Biradar R, Mahajan RG, Kardile CS, Waware SY, Yadav RS. State-of-the-art cooling solutions for electronic devices operating in harsh conditions. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45374

[77]. Yadav RS, Gadekar T, Gundage V, Patil P, Patil A, Patil P, Patil A, Sutar R, Kurhade AS. Numerical and experimental investigation of the effect of overlapping angle on strength and deformation of curved plate joined using arc welding process. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45697

[78]. Kurhade AS, Bhambare PS, Siraskar GD, Dixit SM, Purandare PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. J Adv Res Numer Heat Trans. 2024;26(1):34-43. https://doi.org/10.37934/arnht.26.1.3443

[79]. Yadav RS, Gandhi P, Veeranjaneyulu K, Gaji R, Kirpekar S, Pawar D, Khairnar YS, Patil S, Kurhade AS, Patil SP. Influence of plate thickness on the mechanical behaviour of mild steel curved plates: an experimental study. J Mines Met Fuels. 2024 Dec 1;72(12). https://doi.org/10.18311/jmmf/2024/46253

[80]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, Murali G, Kurhade AS. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47773

[81]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, Kurhade AS. Green adsorbents for heavy metal removal: a study on zinc ion uptake by Tinospora cordifolia biocarbon. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47121

[82]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, Waware SY. Simulation and analysis of heat transfer in counter-flow helical double-pipe heat exchangers using CFD. Int J Mod Phys C. 2025 Mar 15. https://doi.org/10.1142/S0129183125500433

[83]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, Kurhade AS. The role of AI in reducing environmental impact in the mining sector. J Mines Met Fuels. 2025 May 1;73(5).

[84]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, Kurhade AS. Advancements in heat transfer enhancement using perforated twisted tapes: a comprehensive review. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48438

[85]. Chougule SM, Murali G, Kurhade AS. Finite element analysis and design optimization of a paddle mixer shaft. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48664

[86]. Chougule SM, Murali G, Kurhade AS. Failure investigation of the driving shaft in an industrial paddle mixer. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48627

[87]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, Dalvi SA, Waware SY. Thermal management of mobile devices via PCM. J Mines Met Fuels. 2025 May 1;73(5):1313-20. https://doi.org/10.18311/jmmf/2025/48437

[88]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, Waware SY. Mitigating environmental impact: a study on the performance and emissions of a diesel engine fueled with biodiesel blend. J Mines Met Fuels. 2025 Apr 1;73(4):981-9. https://doi.org/10.18311/jmmf/2025/47669

[89]. Kurhade AS, Siraskar GD, Chekuri RB, Murali G, Pawar P, Patil AR, Waware SY, Yadav RS. Biodiesel blends: a sustainable solution for diesel engine performance improvement. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47628

[90]. Kurhade AS, Siraskar GD, Darade MM, Murali G, Katkar TR, Patil SP, Charwad GA, Waware SY, Yadav RS. Enhancement in heat transfer with nanofluids in double-pipe heat exchangers. J Mines Met Fuels. 2025 Jan 7;73(1):165-72. https://doi.org/10.18311/jmmf/2025/47225

[91]. Napte K, Kondhalkar GE, Patil SV, Kharat PV, Banarase SM, Kurhade AS, Waware SY. Recent advances in sustainable concrete and steel alternatives for marine infrastructure. Sustain Mar Struct. 2025 Jun 4:107-31. https://doi.org/10.36956/sms.v7i2.2072

[92]. Kurhade AS, Chougule SM, Kharat PV, Kondhalkar GE, Murali G, Raut PN, Charwad GA, Waware SY, Yadav RS. Integrated approach to enhance vehicle safety: a novel bumper design with energy-absorbing mechanisms. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47168

[93]. Yadav R, Nimbalkar A, Kirpekar S, Patil PJ, Dalvi SA, Jadhav PA, Kurhade AS, Wakchaure GN. Effect of transformed-induced plasticity steel plate thickness on ultimate tensile strength of butt welded joint using Nd:YAG laser. Int J Veh Struct Syst. 2024;16(6):857-62. https://doi.org/10.4273/ijvss.16.6.08

[94]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Real-time surface finish measurement of stepped holding shaft by automatic system. J Adv Manuf Syst. 2025 Feb 25:1-26.

[95]. Ramani P, Reji V, Sathish Kumar V, Murali G, Kurhade AS. Deep learning-based detection and classification of moss and crack damage in rock structures for geo-mechanical preservation. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47760

[96]. Kurhade AS, Siraskar GD, Deshmukh MT, Patil PA, Chaudhari SS, Kadam AA, Dolas AS, Mahajan RG, Waware SY, Yadav RS. Impact of PCM on heat dissipation from IC chips. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47522

[97]. Kurhade AS, Kharat PV, Chougule SM, Darade MM, Karad MM, Murali G, Charwad GA, Waware SY, Yadav RS. Harnessing the power of plastic waste: a sustainable approach to fuel production. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47354

[98]. Sarode GC, Gholap P, Pathak KR, Vali PSNM, Saharkar U, Murali G, Kurhade AS. Edge AI and explainable models for real-time decision-making in ocean renewable energy systems. Sustain Mar Struct. 2025 Jun 24;7(3):17-42. https://doi.org/10.36956/sms.v7i3.2239

[99]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Adv Sci Technol Res J. 2025;19(7). https://doi.org/10.12913/22998624/203873

[100]. Chougule SM, Murali G, Kurhade AS. Design and analysis of industrial material handling systems using FEA and dynamic simulation techniques. J Sci Ind Res. 2025 Jun 18;84(6):645-53. https://doi.org/10.56042/jsir.v84i6.17512

[101]. Kurhade AS, Siraskar GD, Raut PN, Dolas AS, Murali G, Dalvi SA, Waware SY, Yadav RS. Investigating the impact of oxygenated additives on exhaust emissions from unleaded gasoline vehicles. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47410

[102]. Siraskar GD, Kurhade AS, Murali G, Prakash MA, Bharathiraja N, Dharmadhikari DD, Waware SY. Turbulence model comparison and optimal geometry identification in trapped vortex combustors: a RANS-based study. Int J Mod Phys C. 2025 Sep 24:2650020. https://doi.org/10.1142/S0129183126500208

[103]. Keloth Kaithari D, Kaulage A, Ayyappadas MT, Gholap P, Puri A, Bhandari MA, et al. A review of smart AI systems for real-time monitoring and optimization of ocean-based carbon capture, utilization, and storage networks. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5747. https://doi.org/10.59429/ace.v8i3.5747

[104]. Dhamdhere P, Dixit SM, Tatiya M, Shinde BA, Deone J, Kaulage A, et al. AI-based monitoring and management in smart aquaculture for ocean fish farming systems. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5746. https://doi.org/10.59429/ace.v8i3.5746

[105]. Keloth Kaithari D, Ayyappadas MT, Goel S, Shahin A, Patil SK, Chaudhari SS, et al. A review on GA-NN based control strategies for floating solar-ocean hybrid energy platforms. Appl Chem Eng. 2025 Sep 15;8(3):ACE-5745. https://doi.org/10.59429/ace.v8i3.5745

[106]. Bhambare PS, Kaulage A, Darade MM, Murali G, Dixit SM, Vali PSNM, et al. Artificial intelligence for sustainable environmental management in the mining sector: a review. Appl Chem Eng. 2025 Sep 18;8(3):ACE-5756. https://doi.org/10.59429/ace.v8i3.5756

[107]. Dharmadhikari DD, Ray A, Shinde BA, Raut SV, Taware RD, Desai S, et al. Machine learning applications in ore grade estimation and blending optimization for modern mining. Appl Chem Eng. 2025 Nov 6;8(4):ACE-5790. https://doi.org/10.59429/ace.v8i4.5790

[108]. Tatiya M, Darade MM, Shinde BA, Kumbhare MP, Taware RD, Chougule SM, et al. AI applications in tailings and waste management: improving safety, recycling, and water utilization. Appl Chem Eng. 2025 Nov 5;8(4):ACE-5789. https://doi.org/10.59429/ace.v8i4.5789

[109]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. In: Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Vol 1. Cham: Springer; 2019. p. 617-24. https://doi.org/10.1007/978-3-030-16848-3_56

[110]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers. J Mines Met Fuels. 2024;72(7):743-50. https://doi.org/10.18311/jmmf/2024/45348

[111]. Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, Waware SY, Charwad GA. Optimizing aerofoil design: a comprehensive analysis of aerodynamic efficiency through CFD simulations and wind tunnel experiments. J Mines Met Fuels. 2024;72(7):713-24. https://doi.org/10.18311/jmmf/2024/45361

[112]. Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, Yadav RS, Waware SY. Experimental investigation of heat transfer from symmetric and asymmetric IC chips mounted on the SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sci. 2024;121(1):137-47. https://doi.org/10.37934/arfmts.121.1.137147

[113]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28-37. https://doi.org/10.37934/arnht.23.1.2837

[114]. Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, Patil VN, Dalvi SA. Performance of solar collector using recycled aluminum cans for drying. J Mines Met Fuels. 2024 May 1;72(5). https://doi.org/10.18311/jmmf/2024/44643

[115]. Kurhade AS, Kardekar NB, Bhambare PS, Waware SY, Yadav RS, Pawar P, Kirpekar S. A comprehensive review of electronic cooling technologies in harsh field environments: obstacles, progress, and prospects. J Mines Met Fuels. 2024;72(6):557-79. https://doi.org/10.18311/jmmf/2024/45212

[116]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024;72(5):499-507. https://doi.org/10.18311/jmmf/2024/45188

[117]. Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, Munde KH, Nimbalkar AG, Murali G. Predictive placement of IC chips using ANN-GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sci. 2024;118(2):137-47. https://doi.org/10.37934/arfmts.118.2.137147

[118]. Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, Kardekar NB, Nimbalkar AG, Kurhade AS, Murali G, Kore SS. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;119(2):160-72. https://doi.org/10.37934/arfmts.119.2.160172

[119]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65-72. https://doi.org/10.14445/22315381/IJETT-V71I3P208

[120]. Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: a numerical study. Int J Mod Phys C. 2021 Oct 26;32(10):2150132. https://doi.org/10.1142/S0129183121501321

[121]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: an experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024;116(2):51-8. https://doi.org/10.37934/arfmts.116.2.5158

[122]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: a CFD investigation. Int J Mod Phys C. 2022 Dec 28;33(12):2250159. https://doi.org/10.1142/S0129183122501595

[123]. Rami Reddy S, Murali G, Dhana Raju V. Assessment of diethyl ether as a fuel additive on diesel engine characteristics powered with waste mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):3365-76. https://doi.org/10.1080/01430750.2020.1824944

[124]. Emeema J, Murali G, Reddi BV, Mangesh VL. Investigations on paraffin wax/CQD composite phase change material: improved latent heat and thermal stability. J Energy Storage. 2024 Apr 30;85:111056. https://doi.org/10.1016/j.est.2024.111056

[125]. Rami Reddy S, Murali G, Dhana Raju V. Influence of decanol as fuel additive on characteristics of diesel engine powered with mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):2875-88. https://doi.org/10.1080/01430750.2020.1783356

[126]. Tamiloli N, Venkatesan J, Murali G, Kodali SP, Sampath Kumar T, Arunkumar MP. Optimization of end milling on Al-SiC-fly ash metal matrix composite using TOPSIS and fuzzy logic. SN Appl Sci. 2019;1(10):1204. https://doi.org/10.1007/s42452-019-1191-z



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com