Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 9 No. 1 (2026): Publishing > Original Research Article
ACE-5843

Published

2025-12-29

Issue

Vol. 9 No. 1 (2026): Publishing

Section

Original Research Article

License

Copyright (c) 2025 Smita Desai, Sushama Shirke, Vishvas V. Kalunge, Sireesha Koneru, Gaurav Raju Khobragade, Vidhi Rajendra Kadam, Shyamsing Thakur, Govindarajan Murali, Anant Sidhappa Kurhade

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Smita Desai, Sushama Shirke, Vishvas V. Kalunge, Sireesha Koneru, Gaurav Raju Khobragade, Vidhi Rajendra Kadam, … Anant Sidhappa Kurhade. (2025). Machine Learning Approaches for Biomass Resource Mapping and Sustainable Energy Planning. Applied Chemical Engineering, 9(1), ACE-5843. https://doi.org/10.59429/ace.v9i1.5843
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Machine Learning Approaches for Biomass Resource Mapping and Sustainable Energy Planning

Smita Desai

Department of Electronics and Telecommunication, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India; Dnyaan Prasad Global University (DPGU), School of Technology and Research – Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India

Sushama Shirke

Department of Computer Engineering, Army Institute of Technology, Dighi Hills, Pune – 411015, Maharashtra, India.

Vishvas V. Kalunge

Department of Computer Engineering, Dhole Patil College of Engineering, Wagholi, Pune – 412207, Maharashtra, India.

Sireesha Koneru

Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur – 522502, Andhra Pradesh, India.

Gaurav Raju Khobragade

Department of Mathematics, Ramdeobaba University, Ramdeo Tekdi, Katol Road, Nagpur – 440013, Maharashtra, India

Vidhi Rajendra Kadam

Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi Mumbai – 400614, Maharashtra, India.

Shyamsing Thakur

Department of Mechanical Engineering, D. Y. Patil College of Engineering, Akurdi, Pune – 411044, Maharashtra, India, Affiliated to Savitribai Phule Pune University Maharashtra, India.

Govindarajan Murali

Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur – 522502, Andhra Pradesh, India.

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune – 411044 411018, Maharashtra, India; Dnyaan Prasad Global University (DPGU), School of Technology and Research – Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India


DOI: https://doi.org/10.59429/ace.v9i1.5843


Keywords: Biomass resource; GIS–based layers; renewable energy planning, Sustainable Energy Planning


Abstract

Biomass resource mappings are essential tasks for sustainable energy planning, since it offers information on the potential supply, geographical availability of resources, plant sitting, transportation opportunities and roadmap towards long term renewable energy concepts that have policy relevance. Its relevance is increasing as countries are embracing low carbon economy’s roadmaps which demand for reliable spatial quantitative estimations of forest and waste residues–based biomass potentials. Despite the significant headway, there are still some loopholes in applying remote sensing and machine learning techniques. These limitations comprise scarcity of good quality field data for model calibration, poor integration of socio–economic drivers and difficulties in representing fine–scale spatial variability that hinder accurate estimate of yields at different spatial levels. This paper surveys recent machine learning methods for AGB estimation, discusses their methodological limitations, and proposes future research avenues toward scalable and robust forest biomass mapping. A combination of satellite observations, GIS–based layers and ground inventory data sets are included in the analysis as well as a variety of regression, tree based, kernel based, neural network, deep learning and hybrid modelling approaches over various land coverage areas. According to the previous works, evidence is gathered from the surveyed studies that ensemble and deep learning approaches can enhance prediction performance on multi–source data; GIS–machine learning integration contributes to better site selection and logistics analysis. The results also demonstrate the potential for a combined framework that exploits transfer learning approaches and digital twin methodologies to reduce prediction uncertainty, especially in low–data areas. Such information could help support rational decision–making activities for policymakers, planners and industry actors that consider the role of bioenergy in national energy security, climate change mitigation strategies, resource sustainability and long–term renewable energy planning.


References

[1]. Le TT, Paramasivam P, Adril E, Quý NV, Le MX, Duong MT, Le HC, Nguyen AQ. Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms. Int J Renewable Energy Dev. 2024;13(4):783. https://doi.org/10.61435/ijred.2024.60387

[2]. Pençe İ, Kumaş K, Çeşmeli̇ MŞ, Akyüz AÖ. Detailed analysis of Türkiye’s agricultural biomass–based energy potential with machine learning algorithms based on environmental and climatic conditions. Clean Technol Environ Policy. 2024;26(12):4177. https://doi.org/10.1007/s10098–024–02822–1

[3]. Zhao J, Wang J, Anderson N. Machine learning applications in forest and biomass supply chain management: a review. Int J Forest Eng. 2024;35(3):371. https://doi.org/10.1080/14942119.2024.2380230

[4]. Nguyen TH, Paramasivam P, Dong VH, Le HC, Nguyen DC. Harnessing a Better Future: Exploring AI and ML Applications in Renewable Energy. JOIV Int J Informatics Visual. 2024;8(1):55. https://doi.org/10.62527/joiv.8.1.2637

[5]. Esmaeili F, Mafakheri F, Nasiri F. Biomass supply chain resilience: integrating demand and availability predictions into routing decisions using machine learning. Smart Sci. 2023;11(2):293. https://doi.org/10.1080/23080477.2023.2176749

[6]. Camargo LR, Stoeglehner G. Spatiotemporal modelling for integrated spatial and energy planning. Energy Sustain Soc. 2018;8(1). https://doi.org/10.1186/s13705–018–0174–z

[7]. Forest Biomass – From Trees to Energy. IntechOpen eBooks. 2021. https://doi.org/10.5772/intechopen.90324

[8]. Kumar R, Aneesh K. Aboveground Tree Biomass Modelling Using Geospatial Data and Machine Learning Algorithms. Research Square. 2025. https://doi.org/10.21203/rs.3.rs–7203591/v1

[9]. Carrasco–Diaz G, Pérez–Verdín G, Escobar–Flores JG, Linares M. A technical and socioeconomic approach to estimate forest residues as a feedstock for bioenergy in northern Mexico. Forest Ecosyst. 2019;6(1). https://doi.org/10.1186/s40663–019–0201–3

[10]. Wang J. Machine learning applications in biomass supply chain management and optimization. BioResources. 2024;19(4):6961. https://doi.org/10.15376/biores.19.4.6961–6963

[11]. Nguyen TD, Kappas M. Estimating the aboveground biomass of an evergreen broadleaf forest in Xuan Lien Nature Reserve, Thanh Hoa, Vietnam, using SPOT–6 data and the Random Forest algorithm. Int J Forestry Res. 2020;2020:1. https://doi.org/10.1155/2020/4216160

[12]. Ghani WAWAK, Salleh MAM, Adam SN, Shafri HZM, Shaharum SN, Lim KL, Rubinsin NJ, Lam HL, Hasan A, Samsatli S, Tapia JFD, Khezri R, Jaye IFM, Martínez–Hernández E. Sustainable bio–economy that delivers the environment–food–energy–water nexus objectives: the current status in Malaysia. Food Bioprod Process. 2019;118:167. https://doi.org/10.1016/j.fbp.2019.09.002

[13]. Dadhwal VK, Nandy S. Forest biomass assessment using multisource earth observation data: techniques, data sets and applications. J Indian Soc Remote Sens. 2024;52(4):703. https://doi.org/10.1007/s12524–024–01868–4

[14]. Ali J, Wang H, Mehmood K, Hussain W, Iftikhar F, Shahzad F, Hussain K, Qun Y, Jia Z. Remote sensing and integration of machine learning algorithms for above–ground biomass estimation in Larix principis–rupprechtii plantations: a case study using Sentinel–2 and Landsat–9 data in northern China. Front Environ Sci. 2025;13. https://doi.org/10.3389/fenvs.2025.1577298

[15]. Fan Q, Jiang Y, Wang Y, Fan G. Forest carbon storage dynamics and influencing factors in southeastern Tibet: GEE and machine learning analysis. Forests. 2025;16(5):825. https://doi.org/10.3390/f16050825

[16]. Nandy S, Kushwaha SPS. Forest biomass assessment integrating field inventory and optical remote sensing data: a systematic review. Int J Plant Environ. 2021;7(3):181. https://doi.org/10.18811/ijpen.v7i03.1

[17]. Wu H, Xu H. A review of sampling and modeling techniques for forest biomass inventory. Agric Rural Stud. 2023;1(1):2. https://doi.org/10.59978/ar01010002

[18]. Moradi F, Sadeghi SMM, Heidarlou HB, Deljoueı A, Boshkar E, Borz SA. Above–ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel–2 data. Ann For Res. 2022;65(1):165. https://doi.org/10.15287/afr.2022.2390

[19]. Johnson LK, Mahoney MJ, Bevilacqua E, Stehman SV, Domke GM, Beier CM. Fine–resolution landscape–scale biomass mapping using a spatiotemporal patchwork of LiDAR coverages. arXiv. 2022. http://arxiv.org/abs/2205.08530

[20]. Lourenço P. Biomass estimation using satellite–based data. In: IntechOpen eBooks. 2021. https://doi.org/10.5772/intechopen.93603

[21]. Liu Z, Li M, Li C, Liu Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel–1A data with machine learning algorithms. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598–020–67024–3

[22]. Liu C, Shi S, Liao Z, Wang T, Gong W, Shi Z. Estimation of woody vegetation biomass in Australia based on multi–source remote sensing data and stacking models. Sci Rep. 2025;15(1). https://doi.org/10.1038/s41598–025–18891–1

[23]. Ullah S, Nazeer M, Wong MS, Amin G. Remote sensing for aboveground biomass monitoring in terrestrial ecosystems: a systematic review. Remote Sens Appl Soc Environ. 2025;39:101635. https://doi.org/10.1016/j.rsase.2025.101635

[24]. Tamiminia H, Salehi B, Mahdianpari M, Beier CM, Johnson LK, Phoenix DB. A comparison of Random Forest and Light Gradient Boosting Machine for forest above–ground biomass estimation using a combination of Landsat, ALOS PALSAR, and airborne LiDAR data. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2021;163. https://doi.org/10.5194/isprs–archives–xliv–m–3–2021–163–2021

[25]. Özdemir EG, Abdikan S. Forest aboveground biomass estimation in Küre Mountains National Park using multifrequency SAR and multispectral optical data with machine–learning regression models. Remote Sens. 2025;17(6):1063. https://doi.org/10.3390/rs17061063

[26]. Winckel SV, Simons J, Lhermitte S, Muys B. Assessing the effect of forest management on above–ground carbon stock by remote sensing. Biogeosciences. 2025;22(16):4291. https://doi.org/10.5194/bg–22–4291–2025

[27]. Perpinyà–Vallès M, Cendagorta–Galarza D, Améztegui A, Huertas C, Escorihuela M, Romero L. High–resolution aboveground biomass mapping: the benefits of biome–specific deep learning models. Remote Sens. 2025;17(7):1268. https://doi.org/10.3390/rs17071268

[28]. Kaasalainen S, Holopainen M, Karjalainen M, Vastaranta M, Kankare V, Karila K, Osmanoğlu B. Combining LiDAR and synthetic aperture radar data to estimate forest biomass: status and prospects. Forests. 2015;6(1):252. https://doi.org/10.3390/f6010252

[29]. Jacob–Lopes E, Zepka LQ. Renewable resources and biorefineries. IntechOpen eBooks. 2019. https://doi.org/10.5772/intechopen.75236

[30]. Ghosh P, Kumpatla SP. GIS applications in agriculture. In: IntechOpen eBooks. 2022. https://doi.org/10.5772/intechopen.104786

[31]. Martins LOS, Carneiro RAF, Torres EA, Silva MS, Iacovidou E, Fernades FM, Freires FGM. Supply chain management of biomass for energy generation: a critical analysis of main trends. J Agric Sci. 2019;11(13):253. https://doi.org/10.5539/jas.v11n13p253

[32]. Laasasenaho K, Lensu A, Lauhanen R, Rintala J. GIS–data related route optimization, hierarchical clustering, location optimization, and kernel density methods are useful for promoting distributed bioenergy plant planning in rural areas. Sustain Energy Technol Assess. 2019;32:47. https://doi.org/10.1016/j.seta.2019.01.006

[33]. Bharti A, Paritosh K, Mandla VR, Chawade A, Vivekanand V. GIS application for the estimation of bioenergy potential from agriculture residues: an overview. Energies. 2021;14(4):898. https://doi.org/10.3390/en14040898

[34]. Heeley B, Srivastava SK, Ghaffariyan MR. International assessment of bioenergy stakeholders research requirements of GIS based biomass analytics. J For Sci. 2019;65(6):234. https://doi.org/10.17221/31/2019–jfs

[35]. Holsbeeck SV, Srivastava SK. Feasibility of locating biomass–to–bioenergy conversion facilities using spatial information technologies: a case study on forest biomass in Queensland, Australia. Biomass Bioenergy. 2020;139:105620. https://doi.org/10.1016/j.biombioe.2020.105620

[36]. Calvert K, Pearce JM, Mabee W. Toward renewable energy geo–information infrastructures: applications of GIScience and remote sensing that build institutional capacity. Renew Sustain Energy Rev. 2012;18:416. https://doi.org/10.1016/j.rser.2012.10.024

[37]. Vacchiano G, Berretti R, Motta R, Borgogno–Mondino E. Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. iForest Biogeosci For. 2018;11(4):459. https://doi.org/10.3832/ifor2655–011

[38]. Valverde JC, Arias–Aguilar D, Campos RC, Masís C, Jiménez MF, Brenes L. Determination of the optimal size and location of an electricity generation plant that uses lignocellulosic residues from Costa Rican Northern. Research Square. 2021. https://doi.org/10.21203/rs.3.rs–738367/v1

[39]. Atashbar NZ. Modeling and optimization of biomass supply chains for several biorefineries. HAL. 2017.

[40]. Holsbeeck SV, Ezzati S, Röser D, Brown M. A two–stage decision support system to evaluate optimal locations for bioenergy facilities. Forests. 2020;11(9):968. https://doi.org/10.3390/f11090968

[41]. Huy NĐ. Study on biomass supply chain planning and inventory control of perishable products. HAL. 2019.

[42]. Angelis–Dimakis A, Biberacher M, Domínguez J, Fiorese G, Gadocha S, Gnansounou E, Guariso G, Kartalidis A, Panichelli L, Pinedo I, Robba M. Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev. 2010;15(2):1182. https://doi.org/10.1016/j.rser.2010.09.049

[43]. Shaukat SS. Progress in biomass and bioenergy production. InTech eBooks. 2011. https://doi.org/10.5772/972

[44]. Statuto D, Tortora A, Picuno P. A GIS approach for the quantification of forest and agricultural biomass in the Basilicata region. J Agric Eng. 2013;44. https://doi.org/10.4081/jae.2013.s2.e125

[45]. Muinonen E. Optical data–driven multi–source forest inventory setups for boreal and tropical forests. Dissertationes Forestales. 2018;2018(256). https://doi.org/10.14214/df.256

[46]. Hirschmugl M, Sobe C, Traverso L, Cifuentes D, Calera A, Khawaja C, Colangeli M. Energy from biomass: assessing sustainability by geoinformation technology. GI_Forum. 2021;1:120. https://doi.org/10.1553/giscience2021_01_s120

[47]. Labrière N, Davies SJ, Disney M, Duncanson L, Herold M, Lewis SL, Phillips OL, Quegan S, Saatchi S, Schepaschenko D, Scipal K, Sist P, Chave J. Toward a forest biomass reference measurement system for remote sensing applications. Glob Change Biol. 2022;29(3):827. https://doi.org/10.1111/gcb.16497

[48]. Wang R, Cai W, Yu L, Li W, Zhu L, Cao B, Li J, Shen J, Zhang S, Nie Y, Wang C. A high spatial resolution dataset of China’s biomass resource potential. Sci Data. 2023;10(1). https://doi.org/10.1038/s41597–023–02227–7

[49]. Sacchelli S, Zambelli P, Zatelli P, Ciolli M. Biomasfor: an open–source holistic model for the assessment of sustainable forest bioenergy. iForest Biogeosci For. 2013;6(5):285. https://doi.org/10.3832/ifor0897–006

[50]. Charis G, Danha G, Muzenda E. A critical taxonomy of socio–economic studies around biomass and bio–waste to energy projects. Detritus. 2018;(1):1. https://doi.org/10.31025/2611–4135/2018.13687

[51]. Chen C, He G, Fang H, LiangTao S, Zhuang Y, Ding Z, Guo J, Yue X, Yang K, Xi W. Remote sensing estimation and spatiotemporal distribution patterns of aboveground biomass in savanna grasslands of the Yuanmou dry–hot valley. Front Plant Sci. 2025;16. https://doi.org/10.3389/fpls.2025.1648539

[52]. Su H, Shen W, Wang J, Ali A, Li M. Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Research Square. 2020. https://doi.org/10.21203/rs.3.rs–25148/v1

[53]. Erdenebaatar N, Bayaraa B, Amarsaikhan D. Application of Random Forest approach to biomass estimation using remotely sensed data. Advances Eng Res. 2021. https://doi.org/10.2991/aer.k.211029.020

[54]. Su H, Shen W, Wang J, Ali A, Li M. Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosyst. 2020;7(1). https://doi.org/10.1186/s40663–020–00276–7

[55]. Melitha GS, Kashaigili JJ, Mugasha WA. Comparative evaluation of machine learning models for UAV–derived biomass estimation in Miombo woodlands. Research Square. 2024. https://doi.org/10.21203/rs.3.rs–5314155/v1

[56]. He X, Lei X, Liu D, Lei Y, Gao W, Lan J. Understanding the contribution of structural diversity to stand biomass for carbon management of mixed forests using machine learning algorithms. Research Square. 2024. https://doi.org/10.21203/rs.3.rs–4518986/v1

[57]. Marghany M. Environmental applications of remote sensing. InTech eBooks. 2016. https://doi.org/10.5772/60828

[58]. López–Serrano PM, López–Sánchez CA, Álvarez–González JG, García–Gutiérrez J. A comparison of machine learning techniques applied to Landsat–5 TM spectral data for biomass estimation. Can J Remote Sens. 2016;42(6):690. https://doi.org/10.1080/07038992.2016.1217485

[59]. Li D, Gajardo J, Volpi M, Defraeye T. Using machine learning to generate an open–access cropland map from satellite images time series in the Indian Himalayan region. Remote Sens Appl Soc Environ. 2023;32:101057. https://doi.org/10.1016/j.rsase.2023.101057

[60]. Hasan R, Farabi SF, Kamruzzaman Md, Bhuyan MK, Nilima SI, Shahana A. AI–driven strategies for reducing deforestation. Am J Eng Technol. 2024;6(6):6. https://doi.org/10.37547/tajet/volume06issue06–02

[61]. Biomass and Remote Sensing of Biomass. InTech eBooks. 2011. https://doi.org/10.5772/939

[62]. Wang T, Liu Y, Wang M, Fan Q, Tian H, Qiao X, Li Y. Applications of UAS in crop biomass monitoring: a review. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.616689

[63]. Arogoundade AM, Mutanga O, Odindi J, Naicker R. The role of remote sensing in tropical grassland nutrient estimation: a review. Environ Monit Assess. 2023;195(8). https://doi.org/10.1007/s10661–023–11562–6

[64]. Bai G, Koehler–Cole K, Scoby D, Thapa VR, Basche A, Ge Y. Enhancing estimation of cover crop biomass using field–based high–throughput phenotyping and machine learning models. Front Plant Sci. 2024;14. https://doi.org/10.3389/fpls.2023.1277672

[65]. Galuppi M, Sørensen LS, Husted B. Optimization of active fire protection systems in road tunnels: focusing on interaction between water mist and ventilation. Research Portal Denmark. 2024.

[66]. Dong W, Mitchard ETA, Yu H, Hancock S, Ryan CM. Forest aboveground biomass estimation using GEDI and earth observation data through attention–based deep learning. arXiv. 2023. http://arxiv.org/abs/2311.03067

[67]. Seely H, Coops NC, White JC, Montwé D, Winiwarter L, Ragab A. Modelling tree biomass using direct and additive methods with point cloud deep learning in a temperate mixed forest. Sci Remote Sens. 2023;8:100110. https://doi.org/10.1016/j.srs.2023.100110

[68]. Ali G, Mijwil MM, Adamopoulos I, Ayad J. Leveraging the Internet of Things, remote sensing, and artificial intelligence for sustainable forest management. Babylonian J Internet Things. 2025;2025:1. https://doi.org/10.58496/bjiot/2025/001

[69]. Shi Y, Han L, Zhang X, Sobeih T, Gaiser T, Thủy NT, Behrend D, Srivastava AK, Halder K, Ewert F. Deep learning meets process–based models: a hybrid approach to agricultural challenges. arXiv. 2025. http://arxiv.org/abs/2504.16141

[70]. Proceedings of the 20th Conference on Computer Science and Intelligence Systems (FedCSIS). Ann Comput Sci Inf Syst. 2025;43. https://doi.org/10.15439/978–83–973291–6–4

[71]. Ferguson A, Murray C, Tessema YM, McKeown PC, Reymondin L, Loboguerrero AM, Talsma T, Allen B, Jarvis A, Golden A, Spillane C. Can remote sensing enable a Biomass Climate Adaptation Index for agricultural systems? Front Clim. 2022;4. https://doi.org/10.3389/fclim.2022.938975

[72]. Charvát K, Bergheim SR, Palma R, Rynkiewicz AA, Botek M, Kovalenko A, Kordík P, Kubíček A, Kollerová M, Horáková Š. Bridging global language models and local spatial data: The JackDaw approach to context–aware agriculture and rural planning. In: Ann Comput Sci Inf Syst. 2025. p. 507. https://doi.org/10.15439/2025f8393

[73]. Shi Y, Han L, Zhang X, Sobeih T, Gaiser T, Thuy NH, Behrend D, Srivastava AK, Halder K, Ewert F. Deep learning meets process–based models: a hybrid approach to agricultural challenges. 2025.

[74]. Goettsch D, Castillo–Villar KK, Aranguren M. Machine–learning methods to select potential depot locations for the supply chain of biomass co–firing. Energies. 2020;13(24):6554. https://doi.org/10.3390/en13246554

[75]. Liao M, Yao Y. Applications of artificial intelligence–based modeling for bioenergy systems: a review. GCB Bioenergy. 2021;13(5):774. https://doi.org/10.1111/gcbb.12816

[76]. Yelgel ÖC, Yelgel C. The role of machine learning methods for renewable energy forecasting. In: IntechOpen eBooks. 2024. https://doi.org/10.5772/intechopen.1007556

[77]. Nair LG, Verma P. Harnessing carbon potential of lignocellulosic biomass: advances in pretreatments, applications, and the transformative role of machine learning in biorefineries. Bioresour Bioproc. 2025;12(1). https://doi.org/10.1186/s40643–025–00935–z

[78]. Alao KT, Gilani SIU, Sopian K, Alao TO, Oyebamiji DS, Oladosu TL. Biomass and organic waste conversion for sustainable bioenergy: a comprehensive bibliometric analysis of current research trends and future directions. Int J Renewable Energy Dev. 2024;13(4):750. https://doi.org/10.61435/ijred.2024.60149

[79]. Wang Z, Peng X, Xia A, Shah AA, Huang Y, Zhu X, Zhu X, Liao Q. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresour Technol. 2021;343:126099. https://doi.org/10.1016/j.biortech.2021.126099

[80]. Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho S, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano–Micro Lett. 2023;15(1). https://doi.org/10.1007/s40820–022–00993–4

[81]. Nath S. Biotechnology and biofuels: paving the way towards a sustainable and equitable energy for the future. Discover Energy. 2024;4(1). https://doi.org/10.1007/s43937–024–00032–w

[82]. Meramo S, Fantke P, Sukumara S. Advances and opportunities in integrating economic and environmental performance of renewable products. Biotechnol Biofuels Bioprod. 2022;15(1). https://doi.org/10.1186/s13068–022–02239–2

[83]. Kurhade AS, Gadekar T, Siraskar GD, Jawalkar SS, Biradar R, Kadam AA, Yadav RS, Dalvi SA, Waware SY, Mali CN. Thermal performance analysis of electronic components on different substrate materials. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45569

[84]. Kurhade AS, Siraskar GD, Jawalkar SS, Gadekar T, Bhambare PS, Biradar R, Yadav RS, Waware SY, Mali CN. The impact of circular holes in twisted tape inserts on forced convection heat transfer. J Mines Met Fuels. 2024 Oct 16;72(9):1005–12. https://doi.org/10.18311/jmmf/2024/45505

[85]. Kurhade AS, Bhambare PS, Desai VP, Murali G, Yadav RS, Patil P, Gadekar T, Biradar R, Kirpekar S, Charwad GA, Waware SY. Investigating the effect of heat transfer influenced by wavy corrugated twisted tape inserts in double pipe heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;122:146–55. https://doi.org/10.37934/arfmts.122.2.146155

[86]. Kurhade AS, Murali G, Jadhav PA, Bhambare PS, Waware SY, Gadekar T, Yadav RS, Biradar R, Patil P. Performance analysis of corrugated twisted tape inserts for heat transfer augmentation. J Adv Res Fluid Mech Therm Sci. 2024;121(2):192–200. https://doi.org/10.37934/arfmts.121.2.192200

[87]. Yadav RS, Nimbalkar A, Gadekar T, Patil P, Patil VN, Gholap AB, Kurhade AS, Dhumal JR, Waware SY. Comparison of experimental and numerical investigation of mono–composite and metal leaf spring. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45325

[88]. Kurhade AS, Warke P, Maniyar K, Bhambare PS, Waware SY, Deshpande S, Harsur S, Ingle M, Kolhe P, Patil PA, Jadhav P. Wind rose analysis of temperature variation with sensor implantation technique for wind turbine. J Adv Res Fluid Mech Therm Sci. 2024;122(1):1–8. https://doi.org/10.37934/arfmts.122.1.118

[89]. Kurhade AS, Siraskar GD, Bhambare PS, Kaithari DK, Dixit SM, Waware SY. Enhancing smartphone circuit cooling: a computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132–45. https://doi.org/10.37934/arnht.27.1.132145

[90]. Kurhade AS, Darade MM, Siraskar GD, Biradar R, Mahajan RG, Kardile CS, Waware SY, Yadav RS. State–of–the–art cooling solutions for electronic devices operating in harsh conditions. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45374

[91]. Yadav RS, Gadekar T, Gundage V, Patil P, Patil A, Patil P, Patil A, Sutar R, Kurhade AS. Numerical and experimental investigation of the effect of overlapping angle on strength and deformation of curved plate joined using arc welding process. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45697

[92]. Kurhade AS, Bhambare PS, Siraskar GD, Dixit SM, Purandare PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. J Adv Res Numer Heat Trans. 2024;26(1):34–43. https://doi.org/10.37934/arnht.26.1.3443

[93]. Yadav RS, Gandhi P, Veeranjaneyulu K, Gaji R, Kirpekar S, Pawar D, Khairnar YS, Patil S, Kurhade AS, Patil SP. Influence of plate thickness on the mechanical behaviour of mild steel curved plates: an experimental study. J Mines Met Fuels. 2024 Dec 1;72(12). https://doi.org/10.18311/jmmf/2024/46253

[94]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, Murali G, Kurhade AS. Enhancing heat transfer in micro–channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47773

[95]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, Kurhade AS. Green adsorbents for heavy metal removal: a study on zinc ion uptake by Tinospora cordifolia biocarbon. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47121

[96]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, Waware SY. Simulation and analysis of heat transfer in counter–flow helical double–pipe heat exchangers using CFD. Int J Mod Phys C. 2025 Mar 15. https://doi.org/10.1142/S0129183125500433

[97]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, Kurhade AS. The role of AI in reducing environmental impact in the mining sector. J Mines Met Fuels. 2025 May 1;73(5).

[98]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, Kurhade AS. Advancements in heat transfer enhancement using perforated twisted tapes: a comprehensive review. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48438

[99]. Chougule SM, Murali G, Kurhade AS. Finite element analysis and design optimization of a paddle mixer shaft. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48664

[100]. Chougule SM, Murali G, Kurhade AS. Failure investigation of the driving shaft in an industrial paddle mixer. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48627

[101]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, Dalvi SA, Waware SY. Thermal management of mobile devices via PCM. J Mines Met Fuels. 2025 May 1;73(5):1313–20. https://doi.org/10.18311/jmmf/2025/48437

[102]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, Waware SY. Mitigating environmental impact: a study on the performance and emissions of a diesel engine fueled with biodiesel blend. J Mines Met Fuels. 2025 Apr 1;73(4):981–9. https://doi.org/10.18311/jmmf/2025/47669

[103]. Kurhade AS, Siraskar GD, Chekuri RB, Murali G, Pawar P, Patil AR, Waware SY, Yadav RS. Biodiesel blends: a sustainable solution for diesel engine performance improvement. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47628

[104]. Kurhade AS, Siraskar GD, Darade MM, Murali G, Katkar TR, Patil SP, Charwad GA, Waware SY, Yadav RS. Enhancement in heat transfer with nanofluids in double–pipe heat exchangers. J Mines Met Fuels. 2025 Jan 7;73(1):165–72. https://doi.org/10.18311/jmmf/2025/47225

[105]. Napte K, Kondhalkar GE, Patil SV, Kharat PV, Banarase SM, Kurhade AS, Waware SY. Recent advances in sustainable concrete and steel alternatives for marine infrastructure. Sustain Mar Struct. 2025 Jun 4:107–31. https://doi.org/10.36956/sms.v7i2.2072

[106]. Kurhade AS, Chougule SM, Kharat PV, Kondhalkar GE, Murali G, Raut PN, Charwad GA, Waware SY, Yadav RS. Integrated approach to enhance vehicle safety: a novel bumper design with energy–absorbing mechanisms. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47168

[107]. Yadav R, Nimbalkar A, Kirpekar S, Patil PJ, Dalvi SA, Jadhav PA, Kurhade AS, Wakchaure GN. Effect of transformed–induced plasticity steel plate thickness on ultimate tensile strength of butt welded joint using Nd:YAG laser. Int J Veh Struct Syst. 2024;16(6):857–62. https://doi.org/10.4273/ijvss.16.6.08

[108]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Real–time surface finish measurement of stepped holding shaft by automatic system. J Adv Manuf Syst. 2025 Feb 25:1–26.

[109]. Ramani P, Reji V, Sathish Kumar V, Murali G, Kurhade AS. Deep learning–based detection and classification of moss and crack damage in rock structures for geo–mechanical preservation. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47760

[110]. Kurhade AS, Siraskar GD, Deshmukh MT, Patil PA, Chaudhari SS, Kadam AA, Dolas AS, Mahajan RG, Waware SY, Yadav RS. Impact of PCM on heat dissipation from IC chips. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47522

[111]. Kurhade AS, Kharat PV, Chougule SM, Darade MM, Karad MM, Murali G, Charwad GA, Waware SY, Yadav RS. Harnessing the power of plastic waste: a sustainable approach to fuel production. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47354

[112]. Sarode GC, Gholap P, Pathak KR, Vali PSNM, Saharkar U, Murali G, Kurhade AS. Edge AI and explainable models for real–time decision–making in ocean renewable energy systems. Sustain Mar Struct. 2025 Jun 24;7(3):17–42. https://doi.org/10.36956/sms.v7i3.2239

[113]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Adv Sci Technol Res J. 2025;19(7). https://doi.org/10.12913/22998624/203873

[114]. Chougule SM, Murali G, Kurhade AS. Design and analysis of industrial material handling systems using FEA and dynamic simulation techniques. J Sci Ind Res. 2025 Jun 18;84(6):645–53. https://doi.org/10.56042/jsir.v84i6.17512

[115]. Kurhade AS, Siraskar GD, Raut PN, Dolas AS, Murali G, Dalvi SA, Waware SY, Yadav RS. Investigating the impact of oxygenated additives on exhaust emissions from unleaded gasoline vehicles. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47410

[116]. Siraskar GD, Kurhade AS, Murali G, Prakash MA, Bharathiraja N, Dharmadhikari DD, Waware SY. Turbulence model comparison and optimal geometry identification in trapped vortex combustors: a RANS–based study. Int J Mod Phys C. 2025 Sep 24:2650020. https://doi.org/10.1142/S0129183126500208

[117]. Keloth Kaithari D, Kaulage A, Ayyappadas MT, Gholap P, Puri A, Bhandari MA, et al. A review of smart AI systems for real–time monitoring and optimization of ocean–based carbon capture, utilization, and storage networks. Appl Chem Eng. 2025 Sep 17;8(3):ACE–5747. https://doi.org/10.59429/ace.v8i3.5747

[118]. Dhamdhere P, Dixit SM, Tatiya M, Shinde BA, Deone J, Kaulage A, et al. AI–based monitoring and management in smart aquaculture for ocean fish farming systems. Appl Chem Eng. 2025 Sep 17;8(3):ACE–5746. https://doi.org/10.59429/ace.v8i3.5746

[119]. Keloth Kaithari D, Ayyappadas MT, Goel S, Shahin A, Patil SK, Chaudhari SS, et al. A review on GA–NN based control strategies for floating solar–ocean hybrid energy platforms. Appl Chem Eng. 2025 Sep 15;8(3):ACE–5745. https://doi.org/10.59429/ace.v8i3.5745

[120]. Bhambare PS, Kaulage A, Darade MM, Murali G, Dixit SM, Vali PSNM, et al. Artificial intelligence for sustainable environmental management in the mining sector: a review. Appl Chem Eng. 2025 Sep 18;8(3):ACE–5756. https://doi.org/10.59429/ace.v8i3.5756

[121]. Dharmadhikari DD, Ray A, Shinde BA, Raut SV, Taware RD, Desai S, et al. Machine learning applications in ore grade estimation and blending optimization for modern mining. Appl Chem Eng. 2025 Nov 6;8(4):ACE–5790. https://doi.org/10.59429/ace.v8i4.5790

[122]. Tatiya M, Darade MM, Shinde BA, Kumbhare MP, Taware RD, Chougule SM, et al. AI applications in tailings and waste management: improving safety, recycling, and water utilization. Appl Chem Eng. 2025 Nov 5;8(4):ACE–5789. https://doi.org/10.59429/ace.v8i4.5789

[123]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. In: Techno–Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Vol 1. Cham: Springer; 2019. p. 617–24. https://doi.org/10.1007/978–3–030–16848–3_56

[124]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers. J Mines Met Fuels. 2024;72(7):743–50. https://doi.org/10.18311/jmmf/2024/45348

[125]. Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, Waware SY, Charwad GA. Optimizing aerofoil design: a comprehensive analysis of aerodynamic efficiency through CFD simulations and wind tunnel experiments. J Mines Met Fuels. 2024;72(7):713–24. https://doi.org/10.18311/jmmf/2024/45361

[126]. Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, Yadav RS, Waware SY. Experimental investigation of heat transfer from symmetric and asymmetric IC chips mounted on the SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sci. 2024;121(1):137–47. https://doi.org/10.37934/arfmts.121.1.137147

[127]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28–37. https://doi.org/10.37934/arnht.23.1.2837

[128]. Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, Patil VN, Dalvi SA. Performance of solar collector using recycled aluminum cans for drying. J Mines Met Fuels. 2024 May 1;72(5). https://doi.org/10.18311/jmmf/2024/44643

[129]. Kurhade AS, Kardekar NB, Bhambare PS, Waware SY, Yadav RS, Pawar P, Kirpekar S. A comprehensive review of electronic cooling technologies in harsh field environments: obstacles, progress, and prospects. J Mines Met Fuels. 2024;72(6):557–79. https://doi.org/10.18311/jmmf/2024/45212

[130]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024;72(5):499–507. https://doi.org/10.18311/jmmf/2024/45188

[131]. Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, Munde KH, Nimbalkar AG, Murali G. Predictive placement of IC chips using ANN–GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sci. 2024;118(2):137–47. https://doi.org/10.37934/arfmts.118.2.137147

[132]. Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, Kardekar NB, Nimbalkar AG, Kurhade AS, Murali G, Kore SS. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;119(2):160–72. https://doi.org/10.37934/arfmts.119.2.160172

[133]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65–72. https://doi.org/10.14445/22315381/IJETT–V71I3P208

[134]. Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: a numerical study. Int J Mod Phys C. 2021 Oct 26;32(10):2150132. https://doi.org/10.1142/S0129183121501321

[135]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: an experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024;116(2):51–8. https://doi.org/10.37934/arfmts.116.2.5158

[136]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: a CFD investigation. Int J Mod Phys C. 2022 Dec 28;33(12):2250159. https://doi.org/10.1142/S0129183122501595

[137]. Rami Reddy S, Murali G, Dhana Raju V. Assessment of diethyl ether as a fuel additive on diesel engine characteristics powered with waste mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):3365–76. https://doi.org/10.1080/01430750.2020.1824944

[138]. Emeema J, Murali G, Reddi BV, Mangesh VL. Investigations on paraffin wax/CQD composite phase change material: improved latent heat and thermal stability. J Energy Storage. 2024 Apr 30;85:111056. https://doi.org/10.1016/j.est.2024.111056

[139]. Rami Reddy S, Murali G, Dhana Raju V. Influence of decanol as fuel additive on characteristics of diesel engine powered with mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):2875–88. https://doi.org/10.1080/01430750.2020.1783356

[140]. Tamiloli N, Venkatesan J, Murali G, Kodali SP, Sampath Kumar T, Arunkumar MP. Optimization of end milling on Al–SiC–fly ash metal matrix composite using TOPSIS and fuzzy logic. SN Appl Sci. 2019;1(10):1204. https://doi.org/10.1007/s42452–019–1191–z



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com