Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 9 No. 1 (2026): Publishing > Original Research Article
ACE-5850

Published

2026-01-06

Issue

Vol. 9 No. 1 (2026): Publishing

Section

Original Research Article

License

Copyright (c) 2026 Swapnil S. Chaudhari, Kundan Kale, Manisha Raghuvanshi, Torana Kamble, Ramsing Thakur, Sagar Arjun Dalvi, Prashant Ashok Patil, Shital Yashwant Waware, Anant Sidhappa Kurhade

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Swapnil S. Chaudhari, Kundan Kale, Manisha Raghuvanshi, Torana Kamble, Ramsing Thakur, Sagar Arjun Dalvi, … Anant Sidhappa Kurhade. (2026). Machine learning for waste-to-energy processes: Resource evaluation, conversion efficiency, and environmental effects. Applied Chemical Engineering, 9(1), ACE-5850. https://doi.org/10.59429/ace.v9i1.5850
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Machine learning for waste-to-energy processes: Resource evaluation, conversion efficiency, and environmental effects

Swapnil S. Chaudhari

Department of Computer Engineering, Marathwada Mitramandal’s Institute of Technology, Lohgaon, Pune – 411047, Maharashtra ,India.

Kundan Kale

Department of Civil Engineering, Dr. D. Y. Patil College of Engineering, Akurdi, Pune – 411044, Maharashtra, India.

Manisha Raghuvanshi

Department of Applied Sciences and Engineering, AISSM’s Institute of Information Technology, Pune – 411001, Maharashtra, India.

Torana Kamble

Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi Mumbai – 400614, Maharashtra, India.

Ramsing Thakur

Department of Mechanical Engineering, Modern Education Society’s Wadia College of Engineering , Bund Garden Rd, Pune – 411001, Maharashtra, India.

Sagar Arjun Dalvi

Department of Mechanical Engineering, Dr. Bapuji Salunkhe Institute of Engineering & Technology (BSIET), Tarabai Park, Kolhapur – 416003, Maharashtra, India.

Prashant Ashok Patil

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India. ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India.

Shital Yashwant Waware

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India. ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India.

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India. ; Dnyaan Prasad Global University (DPGU), School of Technology and Research - Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune – 411018, Maharashtra, India.


DOI: https://doi.org/10.59429/ace.v9i1.5850


Keywords: Waste-to-energy, machine learning, resource assessment, incineration, gasification, pyrolysis, anaerobic digestion, biogas, emissions, life cycle assessment


Abstract

Waste-to-energy (WtE) technologies are increasingly important for sustainable waste management and circular economy practices, as they enable recovery of energy from municipal, agricultural, and industrial wastes while reducing landfill use and associated emissions. Despite this relevance, existing research on machine learning (ML) applications in WtE systems remains fragmented, with most studies addressing individual processes, specific algorithms, or isolated performance metrics, and lacking an integrated perspective across the full value chain. The objective of this work is to provide a comprehensive review of machine learning applications in WtE systems, covering resource evaluation, conversion efficiency, and environmental effects within a unified framework. The study is based on a systematic analysis of recent peer-reviewed literature reporting experimental validation or applied modeling in incineration, gasification, pyrolysis, and anaerobic digestion processes. The review indicates that machine learning models successfully capture the nonlinear and time-varying behavior of WtE systems, allowing accurate prediction of waste generation and composition, heating value, biogas yield, process efficiency, and pollutant emissions. Tree-based ensembles and neural networks show strong performance in feedstock assessment and conversion modeling, while data-driven soft sensors and surrogate models support real-time emission prediction and life-cycle impact evaluation. These findings demonstrate that machine learning offers practical benefits for improving operational stability, energy recovery, and environmental compliance in WtE plants, while also highlighting persistent challenges related to data quality, model transferability, and interpretability that should guide future research and deployment.


References

[1]. Gupta R, Ouderji ZH, Uzma U, Yu Z, Sloan WT, You S. Machine learning for sustainable organic waste treatment: a critical review. npj Materials Sustainability. 2024;2(1). https://doi.org/10.1038/s44296-024-00009-9

[2]. Chen L, He P, Zhang H, Peng W, Qiu J, Lü F. Applications of machine learning tools for biological treatment of organic wastes: Perspectives and challenges. Circular Economy. 2024;3(2):100088. https://doi.org/10.1016/j.cec.2024.100088

[3]. Fang B, Yu J, Chen Z, Osman AI, Farghali M, Ihara I, Hamza E, Rooney DW, Yap P. Artificial intelligence for waste management in smart cities: a review. Environmental Chemistry Letters. 2023;21(4):1959. https://doi.org/10.1007/s10311-023-01604-3

[4]. Le TT, Paramasivam P, Adril E, Quý NV, Le MX, Duong MT, Le HC, Nguyen AQ. Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms. International Journal of Renewable Energy Development. 2024;13(4):783. https://doi.org/10.61435/ijred.2024.60387

[5]. Alao KT, Gilani SIU, Sopian K, Alao TO, Oyebamiji DS, Oladosu TL. Biomass and organic waste conversion for sustainable bioenergy: A comprehensive bibliometric analysis. International Journal of Renewable Energy Development. 2024;13(4):750. https://doi.org/10.61435/ijred.2024.60149

[6]. Melinda V, Williams T, Anderson JH, Davies JG, Davis C. Enhancing Waste-to-Energy Conversion Efficiency and Sustainability Through Advanced Artificial Intelligence Integration. International Transactions on Education Technology (ITEE). 2024;2(2):183. https://doi.org/10.33050/itee.v2i2.597

[7]. Alsabt R, Alkhaldi W, Adenle YA, Alshuwaikhat HM. Optimizing waste management strategies through artificial intelligence and machine learning. Cleaner Waste Systems. 2024;8:100158. https://doi.org/10.1016/j.clwas.2024.100158

[8]. Baziar M, Yousefi M, Oskoei V, Makhdoomi A, Abdollahzadeh R, Dehghan A. Machine learning-based prediction of heating values in municipal solid waste. Scientific Reports. 2025;15(1). https://doi.org/10.1038/s41598-025-99432-8

[9]. Sesay REV, Fang P. Circular Economy in Municipal Solid Waste Management: Innovations and Challenges for Urban Sustainability. Journal of Environmental Protection. 2025;16(2):35. https://doi.org/10.4236/jep.2025.162003

[10]. Sugumaran D, Udakandage MD, Kodippili SP, Alwis MMD, Attigala DL, Ranasinghe NN, Manatunga DC, Dassanayake RS, Zhou Y, Liu Y. Artificial intelligence in sustainable organic waste treatment: a review. Waste Disposal & Sustainable Energy. 2025;7(3):539. https://doi.org/10.1007/s42768-025-00246-1

[11]. Pillai KS, Mahalingam S, Aiswarya S, Anand AB, Prasad G. Municipal Solid Waste Management: A Review of Machine Learning Applications. E3S Web of Conferences. 2023;455:2018. https://doi.org/10.1051/e3sconf/202345502018

[12]. Dawar I, Srivastava AK, Singal M, Dhyani N, Rastogi SK. A systematic literature review on municipal solid waste management using machine learning and deep learning. Artificial Intelligence Review. 2025;58(6). https://doi.org/10.1007/s10462-025-11196-9

[13]. Priyanka EB, Vijayshanthy S, Thangavel S, Anand RS, Bhavana GB, Khan B, Jeyanthi KMA, Ambikapathy A. Prediction of waste generation forecast and emission potential in Erode City solid waste dump yards using a machine learning approach. Scientific Reports. 2025;15(1):37021. https://doi.org/10.1038/s41598-025-19288-w

[14]. Kumari N, Pandey S, Pandey AK, Banerjee M. Role of Artificial Intelligence in Municipal Solid Waste Management. British Journal of Multidisciplinary and Advanced Studies. 2023;4(3):5. https://doi.org/10.37745/bjmas.2022.0180

[15]. Snoun A, Mufida MK, Artiba A, Delot T. AI-Driven Innovations in Waste Management: Catalyzing the Circular Economy. 2025;12. https://doi.org/10.3390/engproc2025097012

[16]. Sayem FR, Islam MdSB, Naznine M, Nashbat M, Hasan-Zia M, Kunju AKA, Khandakar A, Ashraf A, Majid ME, Kashem SBA, Chowdhury MEH. Enhancing waste sorting and recycling efficiency: deep learning-based classification and detection. Neural Computing and Applications. 2024;37(6):4567. https://doi.org/10.1007/s00521-024-10855-2

[17]. Meza JKS, Yepes DO, Rodrigo-Ilarri J, Rodrigo-Clavero ME. Comparative Analysis of SVM and LSTM Models in Municipal Solid Waste Management in Megacities. International Journal of Environmental Research and Public Health. 2023;20(5):4256. https://doi.org/10.3390/ijerph20054256

[18]. Jose J, Sasipraba T. Estimation of Higher Heating Value for MSW Using DSVM and BSOA. Intelligent Automation & Soft Computing. 2022;36(1):573. https://doi.org/10.32604/iasc.2023.030479

[19]. Liu X, Zhi W, Akhundzada A. Enhancing performance prediction of municipal solid waste generation. Frontiers in Environmental Science. 2025;13. https://doi.org/10.3389/fenvs.2025.1553121

[20]. Suknark P, Youwaib S, Kitkobsin T, Towprayoon S, Chiemchaisri C, Wangyao K. Explainable Artificial Intelligence Model for Evaluating Shear Strength Parameters of Municipal Solid Waste. arXiv. 2025. http://arxiv.org/abs/2502.15827

[21]. Suknark P, Youwaib S, Kitkobsin T, Towprayoon S, Chiemchaisri C, Wangyao K. Explainable Artificial Intelligence Model for Evaluating Shear Strength Parameters of Municipal Solid Waste. 2025. https://arxiv.org/abs/2502.15827

[22]. Adefemi A, Ukpoju EA, Adekoya OO, Abatan A, Adegbite AO. Artificial intelligence in environmental health and public safety: USA strategies. World Journal of Advanced Research and Reviews. 2023;20(3):1420. https://doi.org/10.30574/wjarr.2023.20.3.2591

[23]. Yaghoubi E, Yaghoubi E, Khamees AA, Vakili AH. Review of ANN, ML, DL, and ensemble learning in geotechnical engineering. Neural Computing and Applications. 2024;36(21):12655. https://doi.org/10.1007/s00521-024-09893-7

[24]. Moghaddam HM, Keramati M, Bahrami A, Ghanizadeh AR, Amlashi AT, Isleem HF, Navazani M, Dessouky S. Estimating damping ratios of municipal solid waste using hybridized ensemble learning. Scientific Reports. 2024;14(1). https://doi.org/10.1038/s41598-024-67381-3

[25]. Sharma N, Ingole SB, Pokhariya HS, Parmar A, Shilpa KC, Reddy UM, Hussny HA. From Waste to Worth Management: Intelligent Approach to Resource Utilization. E3S Web of Conferences. 2023;453:1029. https://doi.org/10.1051/e3sconf/202345301029

[26]. Achi CG, Snyman J, Ndambuki JM, Kupolati WK. Advanced Waste-to-Energy Technologies: Sustainable Energy Recovery in a Circular Economy. Nature Environment and Pollution Technology. 2024;23(3):1239. https://doi.org/10.46488/nept.2024.v23i03.002

[27]. Rahman IU, Mohammed HJ, Bamasag A. Recent waste-to-energy advancements for optimal solid waste management. Discover Chemical Engineering. 2025;5(1). https://doi.org/10.1007/s43938-025-00079-8

[28]. Zhao X, Li K, Lamm ME, Çelik S, Wei L, Ozcan S. Solid Waste Gasification: Comparison of Single- and Multi-Staged Reactors. In: IntechOpen eBooks. 2021. https://doi.org/10.5772/intechopen.96157

[29]. Vinjarapu SHB. CO₂ capture for Waste-to-Energy: Pilot scale demonstration. Research Portal Denmark. 2023;414. https://local.forskningsportal.dk/local/.

[30]. Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP. Exploring untapped energy potential of urban solid waste. Energy Ecology and Environment. 2016;1(5):323. https://doi.org/10.1007/s40974-016-0023-x

[31]. Wijayanti W, Nugroho WS, Purnami P, Winarto W, Darmanto EP, Astuti TP, Beacon AH, Widy S, Rasono FAN. Strategic plan for efficient industrial waste management in machinery sector. Eastern-European Journal of Enterprise Technologies. 2024;3:70. https://doi.org/10.15587/1729-4061.2024.301001

[32]. Tsvetkov P. Energy Systems and Environment. InTech eBooks. 2018. https://doi.org/10.5772/intechopen.71167

[33]. Jamilatun S, Pitoyo J, Setyawan M. Waste to Energy Technologies from Municipal Solid Waste. Jurnal Ilmu Lingkungan. 2023;21(3):581. https://doi.org/10.14710/jil.21.3.581-593

[34]. Malule HDR, Ordoñez-Losada L, Ríos DG. Bibliometric analysis of urban solid waste valorization technologies. Ingeniería y Competitividad. 2024;26(2). https://doi.org/10.25100/iyc.v26i2.13225

[35]. Nagawa C. Waste-to-Energy Technologies for Uganda. In: IntechOpen eBooks. 2022. https://doi.org/10.5772/intechopen.101904

[36]. Shareefdeen Z, Youssef N, Taha A, Masoud C. Comments on waste to energy technologies in UAE. Environmental Engineering Research. 2019. https://doi.org/10.4491/eer.2018.387

[37]. Waste to Energy in the Age of the Circular Economy. 2020. https://doi.org/10.22617/tim200330-2

[38]. Serrano D, Horvat A, Sobrino C, Sánchez-Delgado S. Thermochemical conversion of C. cardunculus in nitrate molten salts. Applied Thermal Engineering. 2018;148:136. https://doi.org/10.1016/j.applthermaleng.2018.11.047

[39]. Osman AI, Farghali M, Ihara I, Elgarahy AM, Ayyad A, Mehta N, Ng KH, El-Monaem EMA, Eltaweil AS, Hosny M, Hamed SM, Fawzy S, Yap P, Rooney DW. Pyrolysis of algal and lignocellulosic biomass: materials, fuels, upgrading, economy, and LCA. Environmental Chemistry Letters. 2023;21(3):1419. https://doi.org/10.1007/s10311-023-01573-7

[40]. Chaturvedi R, Darokar H, Patil PP, Kumar M, Sangeeta K, Aravinda K, Kadhim A. Integrating materials, energy, and resource efficiency in the manufacturing industry. E3S Web of Conferences. 2023;453:1036. https://doi.org/10.1051/e3sconf/202345301036

[41]. Fraia SD, Meglio AD, Massarotti N, Vanoli L, Bentivoglio R, Volpecina V. Energy recovery and waste valorization in a frozen food processing facility. Energy Efficiency. 2024;17(3). https://doi.org/10.1007/s12053-024-10193-1

[42]. Ibarra-Esparza FE, González-López ME, et al. Anaerobic digestion for valorizing organic MSW in developing countries. Journal of Environmental Management. 2023;347:118993. https://doi.org/10.1016/j.jenvman.2023.118993

[43]. Zapata-Morales AL, Moreno-Andrade I. Valorization of digestates from organic solid waste. 3 Biotech. 2025;15(10). https://doi.org/10.1007/s13205-025-04507-y

[44]. Feng B, Dam KH van, Guo M, Shah N, Passmore S, Wang X. Planning of FEW2 nexus for sustainable development. BMC Chemical Engineering. 2020;2(1). https://doi.org/10.1186/s42480-020-0027-3

[45]. Ardabili S, Pourdarbani R, Maleki L, Jafari G, Hernández-Hernández JL. Environmental and economic analysis of biomethane production. Acta Technologica Agriculturae. 2024;27(1):1. https://doi.org/10.2478/ata-2024-0001

[46]. Achinas S, Quintero M de JD, Euverink GJW. Machine learning in the biogas power industry: an opinion. Frontiers in Energy Research. 2025;13. https://doi.org/10.3389/fenrg.2025.1589782

[47]. Zhang P, Zhang T, Zhang J, Liu H, Chicaiza-Ortiz C, Lee JTE, He Y, Dai Y, Tong YW. ML prediction of potential biochar and its use in anaerobic digestion. Carbon Neutrality. 2024;3(1). https://doi.org/10.1007/s43979-023-00078-0

[48]. Oliveira P, Marcondes FS, Duarte MS, Durães D, Gonçalves C, Martins G, Nováis P. Incdualpathnet: hybrid model for predicting energy production in wastewater treatment plants. Neural Computing and Applications. 2025. https://doi.org/10.1007/s00521-025-11545-3

[49]. Said Z, Sharma P, Nhuong QTB, Bora BJ, Lichtfouse É, Khalid HM, Luque R, Nguyễn XP, Hoang AT. Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology. 2023;377:128952. https://doi.org/10.1016/j.biortech.2023.128952

[50]. Ascher S, Watson I, You S. Machine learning for modelling gasification and pyrolysis of biomass and waste. Renewable and Sustainable Energy Reviews. 2021;155:111902. https://doi.org/10.1016/j.rser.2021.111902

[51]. Li F, Li Y, Novoselov KS, et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Letters. 2023;15(1). https://doi.org/10.1007/s40820-022-00993-4

[52]. Galal OH, daiem MMA, Alharbi HS, Said N. Machine learning for biogas production in anaerobic digestion: a review. BioResources. 2025;20(4). https://doi.org/10.15376/biores.20.4.galal

[53]. Pençe İ, Kumaş K, Çeşmeli̇ MŞ, Akyüz AÖ. Prediction of biogas potential and CH₄ emissions using boosting algorithms. Environmental Science and Pollution Research. 2024;31(16):24461. https://doi.org/10.1007/s11356-024-32666-7

[54]. Abubakar UA, Lemar GS, Bello AD, et al. Modelling volatile fatty acid concentrations in anaerobic digestion using ML. Environmental Science and Pollution Research. 2024. https://doi.org/10.1007/s11356-024-33281-2

[55]. Osman AI, Nasr M, Farghali M, Rashwan AK, Abdelkader A, Al-Muhtaseb AH, Ihara I, Rooney DW. Optimizing biodiesel production from waste using computational chemistry and ML. Environmental Chemistry Letters. 2024;22(3):1005. https://doi.org/10.1007/s10311-024-01700-y

[56]. Gupta R, Zhang L, Hou J, et al. Explainable machine learning for anaerobic digestion. Bioresource Technology. 2022;369:128468. https://doi.org/10.1016/j.biortech.2022.128468

[57]. Ascher S, Wang X, Watson I, Sloan WT, You S. Interpretable machine learning for modelling biomass and waste gasification. Bioresource Technology. 2022;364:128062. https://doi.org/10.1016/j.biortech.2022.128062

[58]. Xu L, Li Z, He X, et al. ANN-assisted prediction of kinetic parameters of pine needle pyrolysis. BioResources. 2024;19(4):7513. https://doi.org/10.15376/biores.19.4.7513-7529

[59]. Abdollahi SA, Ranjbar SF, Jahromi DR. Estimating biomass higher heating value using feature selection and ML. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-43496-x

[60]. Ge X, Zhang T, Mukherjee S, et al. ML for optimizing hydrothermal treatment of biowastes and predicting phosphorus fate. Biochar. 2025;7(1). https://doi.org/10.1007/s42773-025-00485-9

[61]. Li J, Zhu X, Li Y, Tong YW, Ok YS, Wang X. Multi-task prediction and optimization of hydrochar properties using ML. Journal of Cleaner Production. 2020;278:123928. https://doi.org/10.1016/j.jclepro.2020.123928

[62]. Begum YA, Kumari S, Jain SK, Garg MC. Waste biomass-to-energy: thermochemical and biochemical conversion. Environmental Science Advances. 2024;3(9):1197. https://doi.org/10.1039/d4va00109e

[63]. Wang Z, Peng X, Xia A, et al. Machine learning for boosting bioenergy and biofuel conversion. Bioresource Technology. 2021;343:126099. https://doi.org/10.1016/j.biortech.2021.126099

[64]. Nair LG, Verma P. Carbon potential of lignocellulosic biomass and ML in biorefineries. Bioresources and Bioprocessing. 2025;12(1). https://doi.org/10.1186/s40643-025-00935-z

[65]. Loke K, Lim XH, Osman MA, Low SC, Oh W. Enhancing plastic pyrolysis for CNT synthesis through ML. Journal of Analytical and Applied Pyrolysis. 2025;187:106989. https://doi.org/10.1016/j.jaap.2025.106989

[66]. Clauser NM, Felissia FE, Área MC, Vallejos ME. Integrating bioeconomy and Industry 4.0 in biorefinery design. BioResources. 2022;17(3):5510. https://doi.org/10.15376/biores.17.3.clauser

[67]. Nguyen TH, Paramasivam P, Dong VH, Le HC, Nguyen DC. AI and ML Applications in Renewable Energy. JOIV International Journal on Informatics Visualization. 2024;8(1):55. https://doi.org/10.62527/joiv.8.1.2637

[68]. Ibn-Mohammed T, Mustapha KB, Abdulkareem MG, et al. AI for improved predictions of LCA impacts of functional materials. MRS Communications. 2023;13(5):795. https://doi.org/10.1557/s43579-023-00480-w

[69]. Romeiko XX, Zhang X, Pang Y, Gao F, Xu M, Lin S, Babbitt CW. Machine learning applications in life cycle assessment: a review. Science of the Total Environment. 2023;912:168969. https://doi.org/10.1016/j.scitotenv.2023.168969

[70]. Wang H. Integrating machine learning into life cycle assessment: Review and outlook. PLOS Climate. 2025;4(10). https://doi.org/10.1371/journal.pclm.0000732

[71]. Kurhade AS, Gadekar T, Siraskar GD, Jawalkar SS, Biradar R, Kadam AA, Yadav RS, Dalvi SA, Waware SY, Mali CN. Thermal performance analysis of electronic components on different substrate materials. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45569

[72]. Kurhade AS, Siraskar GD, Jawalkar SS, Gadekar T, Bhambare PS, Biradar R, Yadav RS, Waware SY, Mali CN. The impact of circular holes in twisted tape inserts on forced convection heat transfer. J Mines Met Fuels. 2024 Oct 16;72(9):1005-12. https://doi.org/10.18311/jmmf/2024/45505

[73]. Kurhade AS, Bhambare PS, Desai VP, Murali G, Yadav RS, Patil P, Gadekar T, Biradar R, Kirpekar S, Charwad GA, Waware SY. Investigating the effect of heat transfer influenced by wavy corrugated twisted tape inserts in double pipe heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;122:146-55. https://doi.org/10.37934/arfmts.122.2.146155

[74]. Kurhade AS, Murali G, Jadhav PA, Bhambare PS, Waware SY, Gadekar T, Yadav RS, Biradar R, Patil P. Performance analysis of corrugated twisted tape inserts for heat transfer augmentation. J Adv Res Fluid Mech Therm Sci. 2024;121(2):192-200. https://doi.org/10.37934/arfmts.121.2.192200

[75]. Yadav RS, Nimbalkar A, Gadekar T, Patil P, Patil VN, Gholap AB, Kurhade AS, Dhumal JR, Waware SY. Comparison of experimental and numerical investigation of mono-composite and metal leaf spring. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45325

[76]. Kurhade AS, Warke P, Maniyar K, Bhambare PS, Waware SY, Deshpande S, Harsur S, Ingle M, Kolhe P, Patil PA, Jadhav P. Wind rose analysis of temperature variation with sensor implantation technique for wind turbine. J Adv Res Fluid Mech Therm Sci. 2024;122(1):1-8. https://doi.org/10.37934/arfmts.122.1.118

[77]. Kurhade AS, Siraskar GD, Bhambare PS, Kaithari DK, Dixit SM, Waware SY. Enhancing smartphone circuit cooling: a computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132-45. https://doi.org/10.37934/arnht.27.1.132145

[78]. Kurhade AS, Darade MM, Siraskar GD, Biradar R, Mahajan RG, Kardile CS, Waware SY, Yadav RS. State-of-the-art cooling solutions for electronic devices operating in harsh conditions. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45374

[79]. Yadav RS, Gadekar T, Gundage V, Patil P, Patil A, Patil P, Patil A, Sutar R, Kurhade AS. Numerical and experimental investigation of the effect of overlapping angle on strength and deformation of curved plate joined using arc welding process. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45697

[80]. Kurhade AS, Bhambare PS, Siraskar GD, Dixit SM, Purandare PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. J Adv Res Numer Heat Trans. 2024;26(1):34-43. https://doi.org/10.37934/arnht.26.1.3443

[81]. Yadav RS, Gandhi P, Veeranjaneyulu K, Gaji R, Kirpekar S, Pawar D, Khairnar YS, Patil S, Kurhade AS, Patil SP. Influence of plate thickness on the mechanical behaviour of mild steel curved plates: an experimental study. J Mines Met Fuels. 2024 Dec 1;72(12). https://doi.org/10.18311/jmmf/2024/46253

[82]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, Murali G, Kurhade AS. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47773

[83]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, Kurhade AS. Green adsorbents for heavy metal removal: a study on zinc ion uptake by Tinospora cordifolia biocarbon. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47121

[84]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, Waware SY. Simulation and analysis of heat transfer in counter-flow helical double-pipe heat exchangers using CFD. Int J Mod Phys C. 2025 Mar 15. https://doi.org/10.1142/S0129183125500433

[85]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, Kurhade AS. The role of AI in reducing environmental impact in the mining sector. J Mines Met Fuels. 2025 May 1;73(5).

[86]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, Kurhade AS. Advancements in heat transfer enhancement using perforated twisted tapes: a comprehensive review. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48438

[87]. Chougule SM, Murali G, Kurhade AS. Finite element analysis and design optimization of a paddle mixer shaft. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48664

[88]. Chougule SM, Murali G, Kurhade AS. Failure investigation of the driving shaft in an industrial paddle mixer. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48627

[89]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, Dalvi SA, Waware SY. Thermal management of mobile devices via PCM. J Mines Met Fuels. 2025 May 1;73(5):1313-20. https://doi.org/10.18311/jmmf/2025/48437

[90]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, Waware SY. Mitigating environmental impact: a study on the performance and emissions of a diesel engine fueled with biodiesel blend. J Mines Met Fuels. 2025 Apr 1;73(4):981-9. https://doi.org/10.18311/jmmf/2025/47669

[91]. Kurhade AS, Siraskar GD, Chekuri RB, Murali G, Pawar P, Patil AR, Waware SY, Yadav RS. Biodiesel blends: a sustainable solution for diesel engine performance improvement. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47628

[92]. Kurhade AS, Siraskar GD, Darade MM, Murali G, Katkar TR, Patil SP, Charwad GA, Waware SY, Yadav RS. Enhancement in heat transfer with nanofluids in double-pipe heat exchangers. J Mines Met Fuels. 2025 Jan 7;73(1):165-72. https://doi.org/10.18311/jmmf/2025/47225

[93]. Napte K, Kondhalkar GE, Patil SV, Kharat PV, Banarase SM, Kurhade AS, Waware SY. Recent advances in sustainable concrete and steel alternatives for marine infrastructure. Sustain Mar Struct. 2025 Jun 4:107-31. https://doi.org/10.36956/sms.v7i2.2072

[94]. Kurhade AS, Chougule SM, Kharat PV, Kondhalkar GE, Murali G, Raut PN, Charwad GA, Waware SY, Yadav RS. Integrated approach to enhance vehicle safety: a novel bumper design with energy-absorbing mechanisms. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47168

[95]. Yadav R, Nimbalkar A, Kirpekar S, Patil PJ, Dalvi SA, Jadhav PA, Kurhade AS, Wakchaure GN. Effect of transformed-induced plasticity steel plate thickness on ultimate tensile strength of butt welded joint using Nd:YAG laser. Int J Veh Struct Syst. 2024;16(6):857-62. https://doi.org/10.4273/ijvss.16.6.08

[96]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Real-time surface finish measurement of stepped holding shaft by automatic system. J Adv Manuf Syst. 2025 Feb 25:1-26.

[97]. Ramani P, Reji V, Sathish Kumar V, Murali G, Kurhade AS. Deep learning-based detection and classification of moss and crack damage in rock structures for geo-mechanical preservation. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47760

[98]. Kurhade AS, Siraskar GD, Deshmukh MT, Patil PA, Chaudhari SS, Kadam AA, Dolas AS, Mahajan RG, Waware SY, Yadav RS. Impact of PCM on heat dissipation from IC chips. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47522

[99]. Kurhade AS, Kharat PV, Chougule SM, Darade MM, Karad MM, Murali G, Charwad GA, Waware SY, Yadav RS. Harnessing the power of plastic waste: a sustainable approach to fuel production. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47354

[100]. Sarode GC, Gholap P, Pathak KR, Vali PSNM, Saharkar U, Murali G, Kurhade AS. Edge AI and explainable models for real-time decision-making in ocean renewable energy systems. Sustain Mar Struct. 2025 Jun 24;7(3):17-42. https://doi.org/10.36956/sms.v7i3.2239

[101]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Adv Sci Technol Res J. 2025;19(7). https://doi.org/10.12913/22998624/203873

[102]. Chougule SM, Murali G, Kurhade AS. Design and analysis of industrial material handling systems using FEA and dynamic simulation techniques. J Sci Ind Res. 2025 Jun 18;84(6):645-53. https://doi.org/10.56042/jsir.v84i6.17512

[103]. Kurhade AS, Siraskar GD, Raut PN, Dolas AS, Murali G, Dalvi SA, Waware SY, Yadav RS. Investigating the impact of oxygenated additives on exhaust emissions from unleaded gasoline vehicles. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47410

[104]. Siraskar GD, Kurhade AS, Murali G, Prakash MA, Bharathiraja N, Dharmadhikari DD, Waware SY. Turbulence model comparison and optimal geometry identification in trapped vortex combustors: a RANS-based study. Int J Mod Phys C. 2025 Sep 24:2650020. https://doi.org/10.1142/S0129183126500208

[105]. Keloth Kaithari D, Kaulage A, Ayyappadas MT, Gholap P, Puri A, Bhandari MA, et al. A review of smart AI systems for real-time monitoring and optimization of ocean-based carbon capture, utilization, and storage networks. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5747. https://doi.org/10.59429/ace.v8i3.5747

[106]. Dhamdhere P, Dixit SM, Tatiya M, Shinde BA, Deone J, Kaulage A, et al. AI-based monitoring and management in smart aquaculture for ocean fish farming systems. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5746. https://doi.org/10.59429/ace.v8i3.5746

[107]. Keloth Kaithari D, Ayyappadas MT, Goel S, Shahin A, Patil SK, Chaudhari SS, et al. A review on GA-NN based control strategies for floating solar-ocean hybrid energy platforms. Appl Chem Eng. 2025 Sep 15;8(3):ACE-5745. https://doi.org/10.59429/ace.v8i3.5745

[108]. Bhambare PS, Kaulage A, Darade MM, Murali G, Dixit SM, Vali PSNM, et al. Artificial intelligence for sustainable environmental management in the mining sector: a review. Appl Chem Eng. 2025 Sep 18;8(3):ACE-5756. https://doi.org/10.59429/ace.v8i3.5756

[109]. Dharmadhikari DD, Ray A, Shinde BA, Raut SV, Taware RD, Desai S, et al. Machine learning applications in ore grade estimation and blending optimization for modern mining. Appl Chem Eng. 2025 Nov 6;8(4):ACE-5790. https://doi.org/10.59429/ace.v8i4.5790

[110]. Tatiya M, Darade MM, Shinde BA, Kumbhare MP, Taware RD, Chougule SM, et al. AI applications in tailings and waste management: improving safety, recycling, and water utilization. Appl Chem Eng. 2025 Nov 5;8(4):ACE-5789. https://doi.org/10.59429/ace.v8i4.5789

[111]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. In: Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Vol 1. Cham: Springer; 2019. p. 617-24. https://doi.org/10.1007/978-3-030-16848-3_56

[112]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers. J Mines Met Fuels. 2024;72(7):743-50. https://doi.org/10.18311/jmmf/2024/45348

[113]. Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, Waware SY, Charwad GA. Optimizing aerofoil design: a comprehensive analysis of aerodynamic efficiency through CFD simulations and wind tunnel experiments. J Mines Met Fuels. 2024;72(7):713-24. https://doi.org/10.18311/jmmf/2024/45361

[114]. Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, Yadav RS, Waware SY. Experimental investigation of heat transfer from symmetric and asymmetric IC chips mounted on the SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sci. 2024;121(1):137-47. https://doi.org/10.37934/arfmts.121.1.137147

[115]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28-37. https://doi.org/10.37934/arnht.23.1.2837

[116]. Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, Patil VN, Dalvi SA. Performance of solar collector using recycled aluminum cans for drying. J Mines Met Fuels. 2024 May 1;72(5). https://doi.org/10.18311/jmmf/2024/44643

[117]. Kurhade AS, Kardekar NB, Bhambare PS, Waware SY, Yadav RS, Pawar P, Kirpekar S. A comprehensive review of electronic cooling technologies in harsh field environments: obstacles, progress, and prospects. J Mines Met Fuels. 2024;72(6):557-79. https://doi.org/10.18311/jmmf/2024/45212

[118]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024;72(5):499-507. https://doi.org/10.18311/jmmf/2024/45188

[119]. Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, Munde KH, Nimbalkar AG, Murali G. Predictive placement of IC chips using ANN-GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sci. 2024;118(2):137-47. https://doi.org/10.37934/arfmts.118.2.137147

[120]. Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, Kardekar NB, Nimbalkar AG, Kurhade AS, Murali G, Kore SS. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;119(2):160-72. https://doi.org/10.37934/arfmts.119.2.160172

[121]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65-72. https://doi.org/10.14445/22315381/IJETT-V71I3P208

[122]. Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: a numerical study. Int J Mod Phys C. 2021 Oct 26;32(10):2150132. https://doi.org/10.1142/S0129183121501321

[123]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: an experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024;116(2):51-8. https://doi.org/10.37934/arfmts.116.2.5158

[124]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: a CFD investigation. Int J Mod Phys C. 2022 Dec 28;33(12):2250159. https://doi.org/10.1142/S0129183122501595

[125]. Rami Reddy S, Murali G, Dhana Raju V. Assessment of diethyl ether as a fuel additive on diesel engine characteristics powered with waste mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):3365-76. https://doi.org/10.1080/01430750.2020.1824944

[126]. Emeema J, Murali G, Reddi BV, Mangesh VL. Investigations on paraffin wax/CQD composite phase change material: improved latent heat and thermal stability. J Energy Storage. 2024 Apr 30;85:111056. https://doi.org/10.1016/j.est.2024.111056

[127]. Rami Reddy S, Murali G, Dhana Raju V. Influence of decanol as fuel additive on characteristics of diesel engine powered with mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):2875-88. https://doi.org/10.1080/01430750.2020.1783356

[128]. Tamiloli N, Venkatesan J, Murali G, Kodali SP, Sampath Kumar T, Arunkumar MP. Optimization of end milling on Al-SiC-fly ash metal matrix composite using TOPSIS and fuzzy logic. SN Appl Sci. 2019;1(10):1204. https://doi.org/10.1007/s42452-019-1191-z

[129]. S. Manjula Gandhi, S. Sugumaran, N. Alangudi Balaji, Govindarajan Murali, Amruta Kundalik Mule, Harish Velingkar, et al. Artificial Intelligence in Predictive Toxicology: Modelling Xenobiotic Interactions and Human Risk Assessment. Appl. Chem. Eng. 2025 Dec. 17; 8(4):ACE-5826. https://doi.org/10.59429/ace.v8i4.5826.

[130]. Manjusha Tatiya, Babaso A. Shinde, Navnath B. Pokale, Mahesh Sarada, Mahesh M. Bulhe, Govindrajan Murali, et al. AI-Driven Process Control for Enhancing Safety and Efficiency in Oil Refining. Appl. Chem. Eng. 2025 Nov. 24;8(4):ACE-5792. https://doi.org/10.59429/ace.v8i4.5792

[131]. Ramdas Biradar, Babaso A. Shinde, Milind Manikrao Darade, Tushar Gaikwad, Seeram Srinivasa Rao, Aarti Puri, et al. AI Applications in Smart Mineral Processing: Ore Characterization, Sorting, and Efficiency. Appl. Chem. Eng. 2025 Nov. 24 ;8(4):ACE-5791. https://doi.org/10.59429/ace.v8i4.5791



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com