Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol. 9 No. 1(Publishing) > Original Research Article
ACE-5855

Published

2026-01-20

Issue

Vol. 9 No. 1(Publishing)

Section

Original Research Article

License

Copyright (c) 2026 Madhuri Karad, Puja Gholap, Ashwini Dhumal, Vilas Suresh Mane, N. Alangudi Balaji, Kunal Ingole, Rahul N. Patil, Shital Yashwant Waware, Anant Sidhappa Kurhade

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Madhuri Karad, Puja Gholap, Ashwini Dhumal, Vilas Suresh Mane, N. Alangudi Balaji, Kunal Ingole, … Anant Sidhappa Kurhade. (2026). AI Models for Life-Cycle Assessment of Bio-Energy Technologies and Pollution Quantification. Applied Chemical Engineering, 9(1), ACE-5855. https://doi.org/10.59429/ace.v9i1.5855
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

AI Models for Life-Cycle Assessment of Bio-Energy Technologies and Pollution Quantification

Madhuri Karad

Department of Electronics and Telecommunication Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpri, Pune — 411018, Maharashtra, India ; Dnyaan Prasad Global University (DPGU), School of Technology and Research — Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India.

Puja Gholap

Department of Computer Engineering, Sharadchandra Pawar College of Engineering, Dumberwadi (Otur), Junnar, Pune — 412409, Maharashtra, India

Ashwini Dhumal

Department of Artificial Intelligence and Data Science Engineering, Dr. D. Y. Patil Institute of Engineering, Management and Research, Akurdi, Pune – 411044, Maharashtra, India.

Vilas Suresh Mane

Department of Mechanical Engineering, MES Wadia College of Engineering, Pune — 411001, Maharashtra, India.

N. Alangudi Balaji

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur —522502, Andhra Pradesh, India.

Kunal Ingole

Ramdeobaba University, Ramdeo Tekdi, Katol Road, Nagpur — 440013, Maharashtra, India.

Rahul N. Patil

Department of Computer Engineering, Bharati Vidyapeeth College of Engineering, Navi Mumbai —400614, Maharashtra, India.

Shital Yashwant Waware

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpiversity (DPGU), School of Technology and Research — Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 4110ri, Pune — 411018, Maharashtra, India.; Dnyaan Prasad Global Un18, Maharashtra, India.

Anant Sidhappa Kurhade

Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Technology, Sant Tukaram Nagar, Pimpiversity (DPGU), School of Technology and Research — Dr. D. Y. Patil Unitech Society, Sant Tukaram Nagar, Pimpri, Pune, 4110ri, Pune — 411018, Maharashtra, India.; Dnyaan Prasad Global Un18, Maharashtra, India.


DOI: https://doi.org/10.59429/ace.v9i1.5855


Keywords: bio-energy; life-cycle assessment; artificial intelligence; machine learning; pollution quantification; emissions monitoring; remote sensing


Abstract

Bio-energy systems are frequently promoted as low-carbon substitutes for fossil fuels and are closely related to SDG 7 (Affordable and Clean Energy) and SDG 13 (Climate Action). Actual environmental performance, however, is contingent on supply-chain design, choice of feedstock, set-up of the technology and local operating conditions. The life-cycle assessment (LCA) is currently the predominant scientific instrument for assessing these impacts in a comprehensive approach linked to SDG 12 Responsible Consumption and Production. Traditional LCA, however, has to deal with a variety of challenges including data scarcity, spatial and temporal variations, and the necessity to analyze several scenarios depending on changing circumstances. In recent years, some of these limitations can be mitigated by using artificial intelligence (AI) and machine learning (ML) techniques. This approach facilitates inventory data extrapolation, gap filling and estimation of the nonlinear function between process variables and environmental parameters, all leading to more dynamic and data rich assessment which reflects SDG 9 (Industry, Innovation and Infrastructure). This review consolidates a summary of up-to-date studies on AI-enabled LCA approaches for bio-energy systems and pollution assessment methods that interface directly with sustainability evaluation. The paper describes a general description of key aspects related to bio-energy supply chains in LCAs regarding impact categories, including greenhouse gas (GHG), air pollutants, land use and water use with relevance to SDG 6-Clean Water and Sanitation and SDG 15-Life on Land. It subsequently provides an overview of AI and ML applications covering the full bio-energy life cycle, including aspects related to biomass resource assessment and feedstock production as well conversion, upgrading, refining, distribution to end use. Particular focus is given to works that integrate ML with LCA metrics for the prediction of environmental performance or for the optimization of process conditions through sustainability-based indicators. The review also presents AI-facilitated pollution monitoring applications, such as deep learning techniques for emissions detection using remote sensing data, carbon emissions prediction, and air quality monitoring through ML for betterment of SDG 11 (Sustainable Development Goals: Sustainable cities and communities). Major challenges including model interpretability, system boundary consistency, uncertainty propagation and hybrid modelling requirements have been identified. Next, AI focusing on digital twin, scenario analysis supported by AI and interactive LCA tool for informed decision making.


References

[1]. Wang H. Integrating machine learning into life cycle assessment: Review and future outlook. PLOS Climate. 2025;4(10). https://doi.org/10.1371/journal.pclm.0000732

[2]. Nair LG, Verma P. Harnessing carbon potential of lignocellulosic biomass: advances in pretreatments, applications, and the transformative role of machine learning in biorefineries. Bioresources and Bioprocessing. 2025;12(1). https://doi.org/10.1186/s40643-025-00935-z

[3]. Nguyen TH, Paramasivam P, Dong VH, Le HC, Nguyen DC. Harnessing a Better Future: Exploring AI and ML Applications in Renewable Energy. JOIV International Journal on Informatics Visualization. 2024;8(1):55. https://doi.org/10.62527/joiv.8.1.2637

[4]. Gupta R, Ouderji ZH, Uzma U, Yu Z, Sloan WT, You S. Machine learning for sustainable organic waste treatment: a critical review. npj Materials Sustainability. 2024;2(1). https://doi.org/10.1038/s44296-024-00009-9

[5]. Romeiko XX, Zhang X, Pang Y, Gao F, Xu M, Lin S, Babbitt CW. A review of machine learning applications in life cycle assessment studies. Science of The Total Environment. 2023;912:168969. https://doi.org/10.1016/j.scitotenv.2023.168969

[6]. Martínez-Ramón N, Calvo-Rodríguez F, Iribarren D, Dufour J. Frameworks for the application of machine learning in life cycle assessment for process modeling. Cleaner Environmental Systems. 2024;14:100221. https://doi.org/10.1016/j.cesys.2024.100221

[7]. Lodato C. Process-oriented life cycle assessment modelling of (bio)energy technologies. Research Portal Denmark. 2020;49.

[8]. Liao M, Yao Y. Applications of artificial intelligence-based modeling for bioenergy systems: A review. GCB Bioenergy. 2021;13(5):774. https://doi.org/10.1111/gcbb.12816

[9]. Ibn-Mohammed T, Mustapha KB, Abdulkareem MG, Fuensanta AU, Pecunia V, Dancer CEJ. Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices. MRS Communications. 2023;13(5):795. https://doi.org/10.1557/s43579-023-00480-w

[10]. Gupta R, Zhang L, Hou J, Zhang Z, Liu H, You S, Ok YS, Li W. Review of explainable machine learning for anaerobic digestion. Bioresource Technology. 2022;369:128468. https://doi.org/10.1016/j.biortech.2022.128468

[11]. McManus M, Taylor CM, Mohr A, Whittaker C, Scown CD, Borrion A, Glithero NJ, Yin Y. Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels. International Journal of Life Cycle Assessment. 2015;20(10):1399. https://doi.org/10.1007/s11367-015-0930-7

[12]. Greif L, Kimmig A, Bobbou SE, Jurisch P, Ovtcharova J. Strategic view on the current role of AI in advancing environmental sustainability: a SWOT analysis. Discover Artificial Intelligence. 2024;4(1). https://doi.org/10.1007/s44163-024-00146-z

[13]. Le TT, Paramasivam P, Adril E, Quý NV, Le MX, Duong MT, Le HC, Nguyen AQ. Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms. International Journal of Renewable Energy Development. 2024;13(4):783. https://doi.org/10.61435/ijred.2024.60387

[14]. Alotaibi E, Nassif N. Artificial intelligence in environmental monitoring: in-depth analysis. Discover Artificial Intelligence. 2024;4(1). https://doi.org/10.1007/s44163-024-00198-1

[15]. Ojadi JO, Owulade OA, Odionu CS, Onukwulu EC. Deep Learning Models for Predicting and Mitigating Environmental Impact of Industrial Processes in Real-Time. International Journal of Scientific Research in Science Engineering and Technology. 2025;12(2):119. https://doi.org/10.32628/ijsrset25122109

[16]. Osman AI, Fang B, Zhang Y, Liu Y, Yu J, Farghali M, Rashwan AK, Chen Z, Chen L, Ihara I, Rooney DW, Yap P. Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review. Environmental Chemistry Letters. 2024;22(3):1115. https://doi.org/10.1007/s10311-023-01694-z

[17]. Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AH, Rooney DW. Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters. 2021;19(6):4075. https://doi.org/10.1007/s10311-021-01273-0

[18]. Deprá MC, Zepka LQ, Jacob-Lopes E. Introductory Chapter: Life Cycle Assessment as a Fundamental Tool to Define the Biofuel Performance. In: InTech eBooks. 2017. https://doi.org/10.5772/64677

[19]. Solomon BD. Biofuels and sustainability. Annals of the New York Academy of Sciences. 2010;1185(1):119. https://doi.org/10.1111/j.1749-6632.2009.05279.x

[20]. Darmawan A, Asyhari AT, Dunggio I, Salmahaminati, Aziz M. Energy harvesting from tropical biomasses in Wallacea region: scenarios, technologies, and perspectives. Biomass Conversion and Biorefinery. 2023;14(17):20017. https://doi.org/10.1007/s13399-023-04223-8

[21]. Đuka A, Vusić D, Horvat D, Šušnjar M, Pandur Z, Papa I. LCA Studies in Forestry – Stagnation or Progress? DOAJ. 2017.

[22]. Zakrisson L, Azzi E, Sundberg C. Bioenergy with or without carbon dioxide removal: influence of functional unit choice and parameter variability. EarthArXiv. 2022. https://doi.org/10.31223/x5zk9c

[23]. Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK. Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews. 2014;43:244. https://doi.org/10.1016/j.rser.2014.11.041

[24]. Egas D, Azarkamand S, Casals C, Ponsá S, Llenas L, Colón J. Life cycle assessment of bio-based fertilizers production systems: where are we and where should we be heading? International Journal of Life Cycle Assessment. 2023;28(6):626. https://doi.org/10.1007/s11367-023-02168-8

[25]. Zhu X, Labianca C, He M, Luo Z, Wu C, You S, Tsang DCW. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues. Bioresource Technology. 2022;360:127601. https://doi.org/10.1016/j.biortech.2022.127601

[26]. Wang K, Tong R, Zhai Q, Lyu G, Li Y. A critical review of life cycle assessments on bioenergy technologies: methodological choices, limitations, and future suggestions. Sustainability. 2025;17(8):3415. https://doi.org/10.3390/su17083415

[27]. Gaffey J, Collins MN, Styles D. Review of methodological decisions in life cycle assessment of biorefinery systems across feedstock categories. Journal of Environmental Management. 2024;358:120813. https://doi.org/10.1016/j.jenvman.2024.120813

[28]. Brandão M, Busch P, Kendall A. Life cycle assessment, quo vadis? Supporting or deterring greenwashing? A survey of practitioners. Environmental Science Advances. 2023;3(2):266. https://doi.org/10.1039/d3va00317e

[29]. Talwar N, Holden NM. The limitations of bioeconomy LCA studies for understanding the transition to sustainable bioeconomy. International Journal of Life Cycle Assessment. 2022;27(5):680. https://doi.org/10.1007/s11367-022-02053-w

[30]. Pérez-Almada D, Galán-Martín Á, Contreras M del M, Castro E. Integrated techno-economic and environmental assessment of biorefineries: review and future research directions. Sustainable Energy & Fuels. 2023;7(17):4031. https://doi.org/10.1039/d3se00405h

[31]. Gargalo CL, Yu H, Vollmer NI, Arabkoohsar A, Gernaey KV, Sin G. A process systems engineering view of environmental impact assessment in renewable and sustainable energy production: Status and perspectives. Computers & Chemical Engineering. 2023;180:108504. https://doi.org/10.1016/j.compchemeng.2023.108504

[32]. Lee H, Choi IH, Hwang KR. A comprehensive review of machine learning prediction in the production of bio-oil from lignocellulose via pyrolysis. Research Square. 2024. https://doi.org/10.21203/rs.3.rs-3830648/v1

[33]. Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho S, Zhao T, Zhou H, Ahmad A, Zhu Y, et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Letters. 2023;15(1). https://doi.org/10.1007/s40820-022-00993-4

[34]. Clauser NM, Felissia FE, Área MC, Vallejos ME. Integrating the new age of bioeconomy and Industry 4.0 into biorefinery process design. BioResources. 2022;17(3):5510. https://doi.org/10.15376/biores.17.3.clauser

[35]. Kumar N, Vijayabaskar S, Murali L, Ramaswamy K. Design of optimal Elman Recurrent Neural Network based prediction approach for biofuel production. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-34764-x

[36]. Magazzino C. The impact of deep learning on environmental science. Deleted Journal. 2024;1(1). https://doi.org/10.1186/s44329-024-00003-5

[37]. Dostatni E, Dudkowiak A, Rojek I, Mikołajewski D. Environmental analysis of a product manufactured with additive technology: AI-based vs traditional approaches. Bulletin of the Polish Academy of Sciences Technical Sciences. 2023;144478. https://doi.org/10.24425/bpasts.2023.144478

[38]. Hasan R, Farabi SF, Kamruzzaman M, Bhuyan MK, Nilima SI, Shahana A. AI-driven strategies for reducing deforestation. The American Journal of Engineering and Technology. 2024;6(6):6. https://doi.org/10.37547/tajet/volume06issue06-02

[39]. McCord S, Ahmed A, Cooney G, Dominguez-Faus R, Galindo R, Krynock M, et al. CCU TEA and LCA Guidance 2023 – A Harmonized Approach. Deep Blue, University of Michigan. 2023. https://doi.org/10.2172/1340460

[40]. Frazier AE, Song L. Artificial Intelligence in Landscape Ecology: Recent Advances, Perspectives, and Opportunities. Current Landscape Ecology Reports. 2024;10(1). https://doi.org/10.1007/s40823-024-00103-7

[41]. Alberto N. XAI and Sustainability: Unifying Regulatory Standards and Solutions for Environmental Management. EarthArXiv. 2024. https://doi.org/10.31223/x57q63

[42]. Duan H, Sun Y, Tang Y, Iyer G, Li X. Leveraging machine learning to reveal transparency in integrated assessment model ensembles. Research Square. 2025. https://doi.org/10.21203/rs.3.rs-7727414/v1

[43]. Huang F, Jiang S, Li L, Zhang Y, Zhang Y, Zhang R, et al. Applications of explainable artificial intelligence in Earth system science. arXiv. 2024. https://arxiv.org/abs/2406.11882

[44]. Fan D, Biswas A, Ahrens J. Explainable AI integrated feature engineering for wildfire prediction. arXiv. 2024. https://arxiv.org/abs/2404.01487

[45]. Özkurt C, Canay Ö, Tunç EA, Aydın E, Velioğlu BS. Renewable energy source ranking and analysis using fuzzy MCDM, ML, and XAI techniques. Baltic Journal of Modern Computing. 2025;13(3). https://doi.org/10.22364/bjmc.2025.13.3.06

[46]. Zhao J, Wang J, Anderson N. Machine learning applications in forest and biomass supply chain management: a review. International Journal of Forest Engineering. 2024;35(3):371. https://doi.org/10.1080/14942119.2024.2380230

[47]. Nath S. Biotechnology and biofuels: paving the way towards a sustainable and equitable energy future. Discover Energy. 2024;4(1). https://doi.org/10.1007/s43937-024-00032-w

[48]. Wang Z, Peng X, Xia A, Shah AA, Huang Y, Zhu X, Liao Q. The role of machine learning in boosting bioenergy and biofuels conversion. Bioresource Technology. 2021;343:126099. https://doi.org/10.1016/j.biortech.2021.126099

[49]. Nneoma UC, Chukwudi OF, Nnenna UJ, Ugwu OPC. Hybrid biofactories: integrating microalgae and engineered microbiomes for enhanced biofuel production. Frontiers in Energy Research. 2025;13. https://doi.org/10.3389/fenrg.2025.1616707

[50]. Cao L, Su J, Saddler J, et al. Real-time tracking of renewable carbon content with AI-aided approaches during co-processing of biofeedstocks. Applied Energy. 2024;360:122815. https://doi.org/10.1016/j.apenergy.2024.122815

[51]. Nikhitha R. Beyond purchase intentions: How Technology 4.0 validates green consumer choices and corporate environmental claims. International Journal for Research in Applied Science and Engineering Technology. 2024;12(6):1231. https://doi.org/10.22214/ijraset.2024.63213

[52]. Meramo S, Fantke P, Sukumara S. Advances and opportunities in integrating economic and environmental performance of renewable products. Biotechnology for Biofuels and Bioproducts. 2022;15(1). https://doi.org/10.1186/s13068-022-02239-2

[53]. Anbarasu K, Sundaram T, Sathishkumar K, Alam MM, Al-Sehemi AG, Devarajan Y. Harnessing AI for sustainable bioenergy: optimization, waste reduction, and environmental sustainability. Bioresource Technology. 2024;131893. https://doi.org/10.1016/j.biortech.2024.131893

[54]. Ali MI, Shabbir K, Ali S, Mohsin M, Kumar A, Aziz M, Sultan HM. A new era of discovery: how artificial intelligence has transformed biotechnology. Nepal Journal of Biotechnology. 2024;12(1). https://doi.org/10.54796/njb.v12i1.312

[55]. Deb D, Das K. Improving power plant CO₂ emission estimation with deep learning and satellite/simulated data. arXiv. 2025. https://arxiv.org/abs/2502.02083

[56]. Sun E, Wu S, Wang X, Ye H, Shi H, An Y, Li C. Deep learning methods for inferring industrial CO₂ hotspots from co-emitted NO₂ plumes. Remote Sensing. 2025;17(7):1167. https://doi.org/10.3390/rs17071167

[57]. Oladeji O, Mousavi SS. Towards AI-driven integrative emissions monitoring and management for nature-based climate solutions. arXiv. 2023. https://arxiv.org/abs/2312.11566

[58]. Ali G, Mijwil MM, Adamopoulos I, Ayad J. Leveraging IoT, remote sensing, and AI for sustainable forest management. Babylonian Journal of Internet of Things. 2025;1. https://doi.org/10.58496/bjiot/2025/001

[59]. Arowolo M, Aaron WC, Kugbiyi AO, Eteng US, Iloh D, Aguma CP, Olagunju AO. Integrating AI-enhanced remote sensing with IoT networks for precision environmental monitoring. World Journal of Advanced Research and Reviews. 2024;23(2):2156. https://doi.org/10.30574/wjarr.2024.23.2.2573

[60]. Kulikova EY, Sulimin V, Shvedov V. Artificial intelligence for ambient air quality control. E3S Web of Conferences. 2023;419:3011. https://doi.org/10.1051/e3sconf/202341903011

[61]. Kumar MM, Priya SG, Begum SS, Perumal C, Ramadevi P, Sudha R. Deep learning-based environmental air quality prediction using remote sensing stations. Journal of Environmental Nanotechnology. 2024;13(2):103. https://doi.org/10.13074/jent.2024.06.242615

[62]. Hasan MR, Khatoon R, Akter J, Mohammad N, Kamruzzaman M, Shahana A, Saha S. AI-driven greenhouse gas monitoring. AIMS Environmental Science. 2025;12(3):495. https://doi.org/10.3934/environsci.2025023

[63]. Adefemi A, Ukpoju EA, Adekoya OO, Abatan A, Adegbite AO. Artificial intelligence in environmental health and public safety: USA strategies. World Journal of Advanced Research and Reviews. 2023;20(3):1420. https://doi.org/10.30574/wjarr.2023.20.3.2591

[64]. Hua J, Wang R, Hu YC, Chen Z, Chen L, Osman AI, et al. Artificial intelligence for calculating and predicting building carbon emissions: a review. Environmental Chemistry Letters. 2025. https://doi.org/10.1007/s10311-024-01799-z

[65]. Devarakota P, Tsesmetzis N, Alpak FO, Gala A, Hohl D. AI and the net-zero journey: energy demand, emissions, and transition. arXiv. 2025. https://arxiv.org/abs/2507.10750

[66]. Lützhøft HH, Donner E, Ledin A, Eriksson E. Source classification framework for optimized European-wide emission control strategy. Research Portal Denmark. 2011.

[67]. Luderer G, Pehl M, Arvesen A, Gibon T, Bodirsky BL, de Boer HS, et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications. 2019;10(1). https://doi.org/10.1038/s41467-019-13067-8

[68]. Efroymson RA, Langholtz M, Johnson K, Stokes BJ, Brandt CC, Davis M, et al. 2016 Billion-Ton Report: Environmental sustainability effects of select scenarios. US DOE. 2017. https://doi.org/10.2172/1340460

[69]. Popowicz M, Katzer NJ, Kettele M, Schöggl J, Baumgartner RJ. Digital technologies for life cycle assessment: a review and integrated combination framework. International Journal of Life Cycle Assessment. 2024;30(3):405. https://doi.org/10.1007/s11367-024-02409-4

[70]. Köck B, Friedl A, Serna-Loaiza S, Wukovits W, Mihalyi-Schneider B. Automation of life cycle assessment: developments in life cycle inventory analysis. Sustainability. 2023;15(6):5531. https://doi.org/10.3390/su15065531

[71]. Malek K, Dreger M, Tang Z, Tu Q. Novel data models for interoperable LCA frameworks. arXiv. 2024. https://arxiv.org/abs/2405.10235

[72]. Marzban N, Psarianos M, Herrmann C, Schulz-Nielsen L, Olszewska-Widdrat A, Arefi A, et al. Smart integrated biorefineries: toward zero-waste, emission reduction, and self-sufficient energy production. Biofuel Research Journal. 2025;12(1):2319. https://doi.org/10.18331/brj2025.12.1.4

[73]. Adeyeye O, Akanbi I. Artificial intelligence for systems engineering complexity: a review. Computer Science & IT Research Journal. 2024;5(4):787. https://doi.org/10.51594/csitrj.v5i4.1026

[74]. Martin N, Peiró LT, Villalba G, Nebot-Medina R, Madrid-López C. An energy future beyond climate neutrality: evaluations of transition pathways. Applied Energy. 2022;331:120366. https://doi.org/10.1016/j.apenergy.2022.120366

[75]. Mohammed MA, Ahmed MA, Hacimahmud AV. Data-driven sustainability: leveraging big data and machine learning. Deleted Journal. 2023;17. https://doi.org/10.58496/bjai/2023/005

[76]. Roy S, Khekare G, Chhajed S, Victor A. Integrating classification, regression, and time series models to assess biochar safety and environmental impacts. Frontiers in Soil Science. 2025;5. https://doi.org/10.3389/fsoil.2025.1661097

[77]. Soares N, Martins AG, Carvalho AL, et al. The challenging paradigm of interrelated energy systems toward a sustainable future. Renewable and Sustainable Energy Reviews. 2018;95:171. https://doi.org/10.1016/j.rser.2018.07.023

[78]. Webb E, Burgess P, Pexas G, McKnight CJ. The life cycle assessment of trees outside woodlands: a systematic review. International Journal of Life Cycle Assessment. 2025. https://doi.org/10.1007/s11367-025-02559-z

[79]. Zeug W, Bezama A, Thrän D. A framework for holistic and integrated life cycle sustainability assessment of regional bioeconomy. International Journal of Life Cycle Assessment. 2021;26(10):1998. https://doi.org/10.1007/s11367-021-01983-1

[80]. Karvonen J, Halder P, Kangas J, Leskinen P. Indicators and tools for assessing sustainability impacts of the forest bioeconomy. Forest Ecosystems. 2017;4(1). https://doi.org/10.1186/s40663-017-0089-8

[81]. Kurhade AS, Gadekar T, Siraskar GD, Jawalkar SS, Biradar R, Kadam AA, Yadav RS, Dalvi SA, Waware SY, Mali CN. Thermal performance analysis of electronic components on different substrate materials. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45569

[82]. Kurhade AS, Siraskar GD, Jawalkar SS, Gadekar T, Bhambare PS, Biradar R, Yadav RS, Waware SY, Mali CN. The impact of circular holes in twisted tape inserts on forced convection heat transfer. J Mines Met Fuels. 2024 Oct 16;72(9):1005-12. https://doi.org/10.18311/jmmf/2024/45505

[83]. Kurhade AS, Bhambare PS, Desai VP, Murali G, Yadav RS, Patil P, Gadekar T, Biradar R, Kirpekar S, Charwad GA, Waware SY. Investigating the effect of heat transfer influenced by wavy corrugated twisted tape inserts in double pipe heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;122:146-55. https://doi.org/10.37934/arfmts.122.2.146155

[84]. Kurhade AS, Murali G, Jadhav PA, Bhambare PS, Waware SY, Gadekar T, Yadav RS, Biradar R, Patil P. Performance analysis of corrugated twisted tape inserts for heat transfer augmentation. J Adv Res Fluid Mech Therm Sci. 2024;121(2):192-200. https://doi.org/10.37934/arfmts.121.2.192200

[85]. Yadav RS, Nimbalkar A, Gadekar T, Patil P, Patil VN, Gholap AB, Kurhade AS, Dhumal JR, Waware SY. Comparison of experimental and numerical investigation of mono-composite and metal leaf spring. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45325

[86]. Kurhade AS, Warke P, Maniyar K, Bhambare PS, Waware SY, Deshpande S, Harsur S, Ingle M, Kolhe P, Patil PA, Jadhav P. Wind rose analysis of temperature variation with sensor implantation technique for wind turbine. J Adv Res Fluid Mech Therm Sci. 2024;122(1):1-8. https://doi.org/10.37934/arfmts.122.1.118

[87]. Kurhade AS, Siraskar GD, Bhambare PS, Kaithari DK, Dixit SM, Waware SY. Enhancing smartphone circuit cooling: a computational study of PCM integration. J Adv Res Numer Heat Trans. 2024 Nov 30;27(1):132-45. https://doi.org/10.37934/arnht.27.1.132145

[88]. Kurhade AS, Darade MM, Siraskar GD, Biradar R, Mahajan RG, Kardile CS, Waware SY, Yadav RS. State-of-the-art cooling solutions for electronic devices operating in harsh conditions. J Mines Met Fuels. 2024 Aug 1;72(8). https://doi.org/10.18311/jmmf/2024/45374

[89]. Yadav RS, Gadekar T, Gundage V, Patil P, Patil A, Patil P, Patil A, Sutar R, Kurhade AS. Numerical and experimental investigation of the effect of overlapping angle on strength and deformation of curved plate joined using arc welding process. J Mines Met Fuels. 2024 Oct 1;72(10). https://doi.org/10.18311/jmmf/2024/45697

[90]. Kurhade AS, Bhambare PS, Siraskar GD, Dixit SM, Purandare PS, Waware SY. Computational study on thermal management of IC chips with phase change materials. J Adv Res Numer Heat Trans. 2024;26(1):34-43. https://doi.org/10.37934/arnht.26.1.3443

[91]. Yadav RS, Gandhi P, Veeranjaneyulu K, Gaji R, Kirpekar S, Pawar D, Khairnar YS, Patil S, Kurhade AS, Patil SP. Influence of plate thickness on the mechanical behaviour of mild steel curved plates: an experimental study. J Mines Met Fuels. 2024 Dec 1;72(12). https://doi.org/10.18311/jmmf/2024/46253

[92]. Chippalkatti S, Chekuri RB, Ohol SS, Shinde NM, Barmavatu P, Shelkande VD, Murali G, Kurhade AS. Enhancing heat transfer in micro-channel heat sinks through geometrical optimization. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47773

[93]. Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, Waware SY, Kurhade AS. Green adsorbents for heavy metal removal: a study on zinc ion uptake by Tinospora cordifolia biocarbon. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47121

[94]. Kurhade AS, Siraskar GD, Bhambare PS, Murali G, Deshpande SV, Warke PS, Waware SY. Simulation and analysis of heat transfer in counter-flow helical double-pipe heat exchangers using CFD. Int J Mod Phys C. 2025 Mar 15. https://doi.org/10.1142/S0129183125500433

[95]. Patil Y, Tatiya M, Dharmadhikari DD, Shahakar M, Patil SK, Mahajan RG, Kurhade AS. The role of AI in reducing environmental impact in the mining sector. J Mines Met Fuels. 2025 May 1;73(5).

[96]. Waware SY, Ahire PP, Napate K, Biradar R, Patil SP, Kore SS, Kurhade AS. Advancements in heat transfer enhancement using perforated twisted tapes: a comprehensive review. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48438

[97]. Chougule SM, Murali G, Kurhade AS. Finite element analysis and design optimization of a paddle mixer shaft. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48664

[98]. Chougule SM, Murali G, Kurhade AS. Failure investigation of the driving shaft in an industrial paddle mixer. J Mines Met Fuels. 2025 May 1;73(5). https://doi.org/10.18311/jmmf/2025/48627

[99]. Kurhade AS, Sugumaran S, Kolhalkar NR, Karad MM, Mahajan RG, Shinde NM, Dalvi SA, Waware SY. Thermal management of mobile devices via PCM. J Mines Met Fuels. 2025 May 1;73(5):1313-20. https://doi.org/10.18311/jmmf/2025/48437

[100]. Kurhade AS, Bhavani P, Patil SA, Kolhalkar NR, Chalapathi KS, Patil PA, Waware SY. Mitigating environmental impact: a study on the performance and emissions of a diesel engine fueled with biodiesel blend. J Mines Met Fuels. 2025 Apr 1;73(4):981-9. https://doi.org/10.18311/jmmf/2025/47669

[101]. Kurhade AS, Siraskar GD, Chekuri RB, Murali G, Pawar P, Patil AR, Waware SY, Yadav RS. Biodiesel blends: a sustainable solution for diesel engine performance improvement. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47628

[102]. Kurhade AS, Siraskar GD, Darade MM, Murali G, Katkar TR, Patil SP, Charwad GA, Waware SY, Yadav RS. Enhancement in heat transfer with nanofluids in double-pipe heat exchangers. J Mines Met Fuels. 2025 Jan 7;73(1):165-72. https://doi.org/10.18311/jmmf/2025/47225

[103]. Napte K, Kondhalkar GE, Patil SV, Kharat PV, Banarase SM, Kurhade AS, Waware SY. Recent advances in sustainable concrete and steel alternatives for marine infrastructure. Sustain Mar Struct. 2025 Jun 4:107-31. https://doi.org/10.36956/sms.v7i2.2072

[104]. Kurhade AS, Chougule SM, Kharat PV, Kondhalkar GE, Murali G, Raut PN, Charwad GA, Waware SY, Yadav RS. Integrated approach to enhance vehicle safety: a novel bumper design with energy-absorbing mechanisms. J Mines Met Fuels. 2025 Jan 1;73(1). https://doi.org/10.18311/jmmf/2025/47168

[105]. Yadav R, Nimbalkar A, Kirpekar S, Patil PJ, Dalvi SA, Jadhav PA, Kurhade AS, Wakchaure GN. Effect of transformed-induced plasticity steel plate thickness on ultimate tensile strength of butt welded joint using Nd:YAG laser. Int J Veh Struct Syst. 2024;16(6):857-62. https://doi.org/10.4273/ijvss.16.6.08

[106]. Deshpande SV, Pawar RS, Keche AJ, Kurhade A. Real-time surface finish measurement of stepped holding shaft by automatic system. J Adv Manuf Syst. 2025 Feb 25:1-26.

[107]. Ramani P, Reji V, Sathish Kumar V, Murali G, Kurhade AS. Deep learning-based detection and classification of moss and crack damage in rock structures for geo-mechanical preservation. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47760

[108]. Kurhade AS, Siraskar GD, Deshmukh MT, Patil PA, Chaudhari SS, Kadam AA, Dolas AS, Mahajan RG, Waware SY, Yadav RS. Impact of PCM on heat dissipation from IC chips. J Mines Met Fuels. 2025 Mar 1;73(3). https://doi.org/10.18311/jmmf/2025/47522

[109]. Kurhade AS, Kharat PV, Chougule SM, Darade MM, Karad MM, Murali G, Charwad GA, Waware SY, Yadav RS. Harnessing the power of plastic waste: a sustainable approach to fuel production. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47354

[110]. Sarode GC, Gholap P, Pathak KR, Vali PSNM, Saharkar U, Murali G, Kurhade AS. Edge AI and explainable models for real-time decision-making in ocean renewable energy systems. Sustain Mar Struct. 2025 Jun 24;7(3):17-42. https://doi.org/10.36956/sms.v7i3.2239

[111]. Chougule SM, Murali G, Kurhade AS. Dynamic simulation and performance evaluation of vibratory bowl feeders integrated with paddle shaft mechanisms. Adv Sci Technol Res J. 2025;19(7). https://doi.org/10.12913/22998624/203873

[112]. Chougule SM, Murali G, Kurhade AS. Design and analysis of industrial material handling systems using FEA and dynamic simulation techniques. J Sci Ind Res. 2025 Jun 18;84(6):645-53. https://doi.org/10.56042/jsir.v84i6.17512

[113]. Kurhade AS, Siraskar GD, Raut PN, Dolas AS, Murali G, Dalvi SA, Waware SY, Yadav RS. Investigating the impact of oxygenated additives on exhaust emissions from unleaded gasoline vehicles. J Mines Met Fuels. 2025 Feb 1;73(2). https://doi.org/10.18311/jmmf/2025/47410

[114]. Siraskar GD, Kurhade AS, Murali G, Prakash MA, Bharathiraja N, Dharmadhikari DD, Waware SY. Turbulence model comparison and optimal geometry identification in trapped vortex combustors: a RANS-based study. Int J Mod Phys C. 2025 Sep 24:2650020. https://doi.org/10.1142/S0129183126500208

[115]. Keloth Kaithari D, Kaulage A, Ayyappadas MT, Gholap P, Puri A, Bhandari MA, et al. A review of smart AI systems for real-time monitoring and optimization of ocean-based carbon capture, utilization, and storage networks. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5747. https://doi.org/10.59429/ace.v8i3.5747

[116]. Dhamdhere P, Dixit SM, Tatiya M, Shinde BA, Deone J, Kaulage A, et al. AI-based monitoring and management in smart aquaculture for ocean fish farming systems. Appl Chem Eng. 2025 Sep 17;8(3):ACE-5746. https://doi.org/10.59429/ace.v8i3.5746

[117]. Keloth Kaithari D, Ayyappadas MT, Goel S, Shahin A, Patil SK, Chaudhari SS, et al. A review on GA-NN based control strategies for floating solar-ocean hybrid energy platforms. Appl Chem Eng. 2025 Sep 15;8(3):ACE-5745. https://doi.org/10.59429/ace.v8i3.5745

[118]. Bhambare PS, Kaulage A, Darade MM, Murali G, Dixit SM, Vali PSNM, et al. Artificial intelligence for sustainable environmental management in the mining sector: a review. Appl Chem Eng. 2025 Sep 18;8(3):ACE-5756. https://doi.org/10.59429/ace.v8i3.5756

[119]. Dharmadhikari DD, Ray A, Shinde BA, Raut SV, Taware RD, Desai S, et al. Machine learning applications in ore grade estimation and blending optimization for modern mining. Appl Chem Eng. 2025 Nov 6;8(4):ACE-5790. https://doi.org/10.59429/ace.v8i4.5790

[120]. Tatiya M, Darade MM, Shinde BA, Kumbhare MP, Taware RD, Chougule SM, et al. AI applications in tailings and waste management: improving safety, recycling, and water utilization. Appl Chem Eng. 2025 Nov 5;8(4):ACE-5789. https://doi.org/10.59429/ace.v8i4.5789

[121]. Upadhe SN, Mhamane SC, Kurhade AS, Bapat PV, Dhavale DB, Kore LJ. Water saving and hygienic faucet for public places in developing countries. In: Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Vol 1. Cham: Springer; 2019. p. 617-24. https://doi.org/10.1007/978-3-030-16848-3_56

[122]. Kurhade AS, Siraskar GD, Darade MM, Dhumal JR, Kardile CS, Biradar R, Patil SP, Waware SY. Predicting heat transfer enhancement with twisted tape inserts using fuzzy logic techniques in heat exchangers. J Mines Met Fuels. 2024;72(7):743-50. https://doi.org/10.18311/jmmf/2024/45348

[123]. Kurhade AS, Siraskar GD, Kondhalkar GE, Darade MM, Yadav RS, Biradar R, Waware SY, Charwad GA. Optimizing aerofoil design: a comprehensive analysis of aerodynamic efficiency through CFD simulations and wind tunnel experiments. J Mines Met Fuels. 2024;72(7):713-24. https://doi.org/10.18311/jmmf/2024/45361

[124]. Kurhade AS, Kadam AA, Biradar R, Bhambare PS, Gadekar T, Patil P, Yadav RS, Waware SY. Experimental investigation of heat transfer from symmetric and asymmetric IC chips mounted on the SMPS board with and without PCM. J Adv Res Fluid Mech Therm Sci. 2024;121(1):137-47. https://doi.org/10.37934/arfmts.121.1.137147

[125]. Kurhade AS, Siraskar GD, Bhambare PS, Dixit SM, Waware SY. Numerical investigation on the influence of substrate board thermal conductivity on electronic component temperature regulation. J Adv Res Numer Heat Trans. 2024;23(1):28-37. https://doi.org/10.37934/arnht.23.1.2837

[126]. Kurhade AS, Waware SY, Munde KH, Biradar R, Yadav RS, Patil P, Patil VN, Dalvi SA. Performance of solar collector using recycled aluminum cans for drying. J Mines Met Fuels. 2024 May 1;72(5). https://doi.org/10.18311/jmmf/2024/44643

[127]. Kurhade AS, Kardekar NB, Bhambare PS, Waware SY, Yadav RS, Pawar P, Kirpekar S. A comprehensive review of electronic cooling technologies in harsh field environments: obstacles, progress, and prospects. J Mines Met Fuels. 2024;72(6):557-79. https://doi.org/10.18311/jmmf/2024/45212

[128]. Kurhade AS, Waware SY, Bhambare PS, Biradar R, Yadav RS, Patil VN. A comprehensive study on Calophyllum inophyllum biodiesel and dimethyl carbonate blends: performance optimization and emission control in diesel engines. J Mines Met Fuels. 2024;72(5):499-507. https://doi.org/10.18311/jmmf/2024/45188

[129]. Kurhade AS, Biradar R, Yadav RS, Patil P, Kardekar NB, Waware SY, Munde KH, Nimbalkar AG, Murali G. Predictive placement of IC chips using ANN-GA approach for efficient thermal cooling. J Adv Res Fluid Mech Therm Sci. 2024;118(2):137-47. https://doi.org/10.37934/arfmts.118.2.137147

[130]. Waware SY, Chougule SM, Yadav RS, Biradar R, Patil P, Munde KH, Kardekar NB, Nimbalkar AG, Kurhade AS, Murali G, Kore SS. A comprehensive evaluation of recent studies investigating nanofluids utilization in heat exchangers. J Adv Res Fluid Mech Therm Sci. 2024;119(2):160-72. https://doi.org/10.37934/arfmts.119.2.160172

[131]. Kurhade AS, Murali G, Rao TV. CFD approach for thermal management to enhance the reliability of IC chips. Int J Eng Trends Technol. 2022;71(3):65-72. https://doi.org/10.14445/22315381/IJETT-V71I3P208

[132]. Kurhade AS, Rao TV, Mathew VK, Patil NG. Effect of thermal conductivity of substrate board for temperature control of electronic components: a numerical study. Int J Mod Phys C. 2021 Oct 26;32(10):2150132. https://doi.org/10.1142/S0129183121501321

[133]. Waware SY, Kore SS, Kurhade AS, Patil SP. Innovative heat transfer enhancement in tubular heat exchanger: an experimental investigation with minijet impingement. J Adv Res Fluid Mech Therm Sci. 2024;116(2):51-8. https://doi.org/10.37934/arfmts.116.2.5158

[134]. Kurhade AS, Murali G. Thermal control of IC chips using phase change material: a CFD investigation. Int J Mod Phys C. 2022 Dec 28;33(12):2250159. https://doi.org/10.1142/S0129183122501595

[135]. Rami Reddy S, Murali G, Dhana Raju V. Assessment of diethyl ether as a fuel additive on diesel engine characteristics powered with waste mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):3365-76. https://doi.org/10.1080/01430750.2020.1824944

[136]. Emeema J, Murali G, Reddi BV, Mangesh VL. Investigations on paraffin wax/CQD composite phase change material: improved latent heat and thermal stability. J Energy Storage. 2024 Apr 30;85:111056. https://doi.org/10.1016/j.est.2024.111056

[137]. Rami Reddy S, Murali G, Dhana Raju V. Influence of decanol as fuel additive on characteristics of diesel engine powered with mango seed biodiesel blend. Int J Ambient Energy. 2022 Dec 31;43(1):2875-88. https://doi.org/10.1080/01430750.2020.1783356

[138]. Tamiloli N, Venkatesan J, Murali G, Kodali SP, Sampath Kumar T, Arunkumar MP. Optimization of end milling on Al-SiC-fly ash metal matrix composite using TOPSIS and fuzzy logic. SN Appl Sci. 2019;1(10):1204. https://doi.org/10.1007/s42452-019-1191-z

[139]. S. Manjula Gandhi, S. Sugumaran, N. Alangudi Balaji, Govindarajan Murali, Amruta Kundalik Mule, Harish Velingkar, et al. Artificial Intelligence in Predictive Toxicology: Modelling Xenobiotic Interactions and Human Risk Assessment. Appl. Chem. Eng. 2025 Dec. 17; 8(4):ACE-5826. https://doi.org/10.59429/ace.v8i4.5826.

[140]. Manjusha Tatiya, Babaso A. Shinde, Navnath B. Pokale, Mahesh Sarada, Mahesh M. Bulhe, Govindrajan Murali, et al. AI-Driven Process Control for Enhancing Safety and Efficiency in Oil Refining. Appl. Chem. Eng. 2025 Nov. 24;8(4):ACE-5792. https://doi.org/10.59429/ace.v8i4.5792

[141]. Ramdas Biradar, Babaso A. Shinde, Milind Manikrao Darade, Tushar Gaikwad, Seeram Srinivasa Rao, Aarti Puri, et al. AI Applications in Smart Mineral Processing: Ore Characterization, Sorting, and Efficiency. Appl. Chem. Eng. 2025 Nov. 24 ;8(4):ACE-5791. https://doi.org/10.59429/ace.v8i4.5791

[142]. Pallavi Vishnu Kharat, Beena Nawghare, N. Alangudi Balaji, Vishvas V. Kalunge, Charu P. Kumbhare, Tejasvini Rahul Katkar, et al. Data-Driven Prediction of Biofuel Yield and Combustion Emissions Using AI Techniques. Appl. Chem. Eng. 2025 Dec. 25;8(4): ACE-5841. https://doi.org/10.59429/ace.v8i4.5841

[143]. Swapnil S. Chaudhari, Kundan Kale, Manisha Raghuvanshi, Torana Kamble, Ramsing Thakur, Sagar Arjun Dalvi, et al. Machine learning for waste-to-energy processes: Resource evaluation, conversion efficiency, and environmental effects. Appl. Chem. Eng. 2026 Jan. 6 ;9(1): ACE-5850. https://doi.org/10.59429/ace.v9i1.5850

[144]. Madhuri Karad, Nidhi Sharma, Khaja Gulam Hussain, Vakiti Sreelatha Reddy, Madhuri Ghuge, Sagar Arjun Dalvi, et al. AI-Based Pollution Monitoring in Bio-Energy Production Chains: Methods, Applications, and Gaps. Appl. Chem. Eng. 2026 Jan. 6 ;9(1):ACE-5848. https://doi.org/10.59429/ace.v9i1.5848

[145]. Smita Desai, Sushama Shirke, Vishvas V. Kalunge, Sireesha Koneru, Gaurav Raju Khobragade, Vidhi Rajendra Kadam, et al. Machine Learning Approaches for Biomass Resource Mapping and Sustainable Energy Planning. Appl. Chem. Eng. 2025 Dec. 29; 9(1): ACE-5843. https://doi.org/10.59429/ace.v9i1.5843



ISSN: 2578-2010
21 Woodlands Close #02-10, Primz Bizhub,Postal 737854, Singapore

Email:editorial_office@as-pub.com