Applied Chemical Engineering

  • Home
  • About
    • About the Journal
    • Article Processing Charges (APC) Payment
    • Contact
  • Articles
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
  • Special Issues
Register Login

Make a Submission

Make a Submission

editor-in-chief

Editors-in-Chief

Prof. Sivanesan Subramanian

Anna University, India

 

Prof. Hassan Karimi-Maleh

University of Electronic Science
and Technology of China (UESTC)

issn

ISSN

2578-2010 (Online)

indexing

 Indexing & Archiving 

 

 

 



Article Processing Charges

Article Processing Charges (APCs)

US$1600

publication_frequency

Publication Frequency

Quarterly

Keywords

Home > Archives > Vol 2, No 2 (Published) > Original Research Article
PDF
Tables Figures

Published

2019-08-07

Issue

Vol 2, No 2 (Published)

Section

Original Research Article

License

The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.

Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under: 

 OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.

 

 This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.

How to Cite

Hsieh, C.-C., Wu, C.-H., & Wu, W. (2019). Study on Phase Transformation and Desulfurization Ability during Refining with Flux Additions of B2O3 and CaF2 into CaO-Based Desulfurizer. Applied Chemical Engineering, 2(2). https://doi.org/10.24294/ace.v1i2.428
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Study on Phase Transformation and Desulfurization Ability during Refining with Flux Additions of B2O3 and CaF2 into CaO-Based Desulfurizer

Chih-Chun Hsieh

Department of Materials Science and Engineering, National Chung Hsing University

Cheng-Han Wu

Department of Materials Science and Engineering, National Chung Hsing University

Weite Wu

Department of Materials Science and Engineering, National Chung Hsing University


DOI: https://doi.org/10.24294/ace.v1i2.428


Keywords: Compounds, Oxides, Recycling, Phase Transformation, X-Ray Diffraction


Abstract

CaF2 aids melting and desulfurization, but can also cause environmental pollution. Thus, it has become important to discuss the phase transformation and find a substitute for CaF2. A CaO-based desulfurizer with various flux additions of B2O3 and CaF2 is investigated during the refining process. The purpose of this study is to discuss the phase transformation and desulfurization ability and during refining with B2O3 and CaF2 using a high frequency furnace. Experimental results indicate that the melting temperature of CaO-Al2O3-SiO2 series desulfurizer becomes lower when more B2O3 and less CaF2 are added. On the other hand, the desulfurization ability can be affected within 15 min when various proportions of B2O3 and CaF2 areadded. The desulfurization ability is better with a high content of B2O3 desulfurizer within a 15 min period. However, the desulfurization ability is not affected by the proportion of B2O3 and CaF2 for a long melting period (30 min).


Author Biography

Chih-Chun Hsieh, Department of Materials Science and Engineering, National Chung Hsing University

Dr. Chih-Chun Hsieh is currently an Assistant Professor in the Department of Department of Aircraft Engineering, Air Force Institute of Technology, Taiwan. He was also a Lead Guest Editor in Advances in Materials Science and Engineering. His academic skill is steels, metals, residual stress analysis & relief, physical metallurgy, metallographic observation, and welding engineering. He served as Executive Editor in Taiwan Welding Society (TWS) and edited the Journal of Welding & Cutting. He received the international scholarship to Germany from the German Academic Exchange Service as the visiting scientist in Department of Ferrous Metallurgy of RWTH Aachen University. Dr. Hsieh is also a reviewer for several international scientific journals and reviewed about 65 articles.

References

[1] Wang H, Li G, Li B, et al. Effect of B2O3 on melting temperature of CaO-based ladle refining slag. Journal of Iron and Steel Research International 2010; 17(10): 18–22.

[2] Hong X, Zheng Q, Jiang G, et al. In: Kanagy DI (editor). Proceeding of 84th Steelmaking Conference; 2001 Mar 25–28; Baltimore, Maiyland. Association for Iron & Steel Technology; 2001. p. 715.

[3] Chen YL, Chang JE, Shih PH, et al. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture. Journal of Environmental Management 2010; 91(9): 1892–1897.

[4] El-Mahllawy MS. Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Construction and Building Materials 2008; 22(8): 1887–1896.

[5] Durinck D, Engström F, Arnout S, et al. Hot stage processing of metallurgical slags. Resources, Conservation and Recycling 2008; 52(10): 1121–1131.

[6] Kuo YM, Huang KL, Wang CT, et al. Effect of Al2O3 mole fraction and cooling method on vitrification of an artificial hazardous material. Part 1: Variation of crystalline phases and slag structures. Journal of Hazardous Materials 2009 169(1–3): 626–634.

[7] Das B, Prakash S, Reddy PSR, et al. An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling 2007; 50(1): 40–57.

[8] Li HJ, Suito H, Tokuda M. Proc. 1st. Int. Conf. on Processing Materials for Properties, 1993. ISIJ international 1995; 35(9): 1079–1088.

[9] Nakai Y, Kikuchi N, Iwasa M, et al. Development of slag recycling process in hot metal desulfurization with mechanical stirring. Steel Research International 2009; 80(10): 727–732.

[10] Hino M, Kitagawa S, Ban-Ya S. Sulphide capacities of CaO-Al2O3-SiO2Slags. Tetsu-to-Hagané 1993; 79(1): 34–40.

[11] Sutcu M, Akkurt S. Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. Journal of the European Ceramic Society 2010; 30(8): 1785–1793.

[12] Yu X, Shi Q, Zhai R, et al. Influence of B2O3 on melting haracteristics of CaO-Al2O3-SiO2-MgO-CaF2 pentary slag series. Special Steel 2006; 27(4): 5–7.



ISSN: 2578-2010
21 Woodlands Close #02-10 Primz Bizhub Singapore 737854

Email:editorial_office@as-pub.com