Published
2023-12-29
Issue
Section
Original Research Article
License
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Thermal degradation of 3D printing processed polylactide samples by means of vibrational spectroscopy
P. Siafarika
Department of Chemistry, University of Ioannina
D.E. Mouzakis
Department of Military Sciences, Division of Mathematics and Engineering Sciences, Hellenic Army Academy
N.K. Nasikas
Department of Military Sciences, Division of Mathematics and Engineering Sciences, Hellenic Army Academy
A.G. Kalampounias
Department of Chemistry, University of Ioannina; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing
Keywords: Polylactide, FTIR spectroscopy, degradation kinetics, real-time monitoring, 3D printing.
References
1. Tsuji H, Ikada Y. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 1995; 36(14): 2709–2716. doi: 10.1016/0032-3861(95)93647-52. Martin O, Avérous L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001; 42(14): 6209–6219. doi: 10.1016/S0032-3861(01)00086-6
3. Dash A, Kabra S, Misra S, et al. Comparative property analysis of fused filament fabrication PLA using fresh and recycled feedstocks. Materials Research Express 2022; 9(11): 115303. doi: 10.1088/2053-1591/ac96d4
4. Peelman N, Ragaert P, Ragaert K, et al. Heat resistance of biobased materials, evaluation and effect of processing techniques and additives. Polymer Engineering & Science 2018; 58(4): 513–520. doi: 10.1002/pen.24760
5. Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability 1998; 59(1–3): 145–152. doi: 10.1016/S0141-3910(97)00148-1
6. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science 2002; 27(6): 1123–1163. doi: 10.1016/S0079-6700(02)00012-6
7. Xing R, Huang R, Qi W, et al. Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation. AIChE Journal 2018; 64(10): 3700–3708. doi: 10.1002/aic.16347
8. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000; 21(23): 2335–2346. doi: 10.1016/S0142-9612(00)00101-0
9. Saini P, Arora M, Ravi Kumar MNV. Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews 2016; 107: 47–59. doi: 10.1016/j.addr.2016.06.014
10. Rocha DB, Souza de Carvalho J, de Oliveira SA, dos Santos Rosa D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. Journal of Applied Polymer Science 2018; 135(35): 46660. doi: 10.1002/app.46660
11. Auras R, Harte B, Selke S. An Overview of polylactides as packaging materials. Macromolecular Bioscience 2004; 4(9): 835–864. doi: 10.1002/mabi.200400043
12. Auras R, Lim LT, Selke SEM, Tsuji H. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons; 2011.
13. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, et al. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews 2016; 107: 333–366. doi: 10.1016/j.addr.2016.03.010
14. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences 2009; 10(9): 3722–3742. doi: 10.3390/ijms10093722
15. Kopinke FD, Mackenzie K. Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis 1997; 40–41: 43–53. doi: 10.1016/S0165-2370(97)00022-3
16. Lin Z, Guo X, He Z, et al. Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polymer Engineering & Science 2021; 61(1): 201–210. doi: 10.1002/pen.25568
17. Kalampounias AG, Kastrissios DT, Yannopoulos SN. Structure and vibrational modes of sulfur around the λ-transition and the glass-transition. Journal of Non-Crystalline Solids 2003; 326–327: 115–119. doi: 10.1016/S0022-3093(03)00388-0
18. Kalampounias AG, Kirillov SA, Steffen W, Yannopoulos SN. Raman spectra and microscopic dynamics of bulk and confined salol. Journal of Molecular Structure 2003; 651–653: 475–483. doi: 10.1016/S0022-2860(03)00128-5
19. Latsis GK, Banti CN, Kourkoumelis N, et al. Poly organotin acetates against DNA with possible implementation on human breast cancer. International Journal of Molecular Sciences 2018; 19(7): 2055. doi: 10.3390/ijms19072055
20. Wrona M, Cran MJ, Nerin C, Bigger SW. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers 2017; 156: 108–117. doi: 10.1016/j.carbpol.2016.08.094
21. Dharmalingam K, Anandalakshmi R. Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. International Journal of Biological Macromolecules 2019; 134: 815–829. doi: 10.1016/j.ijbiomac.2019.05.027
22. Jamshidi K, Hyon SH, Ikada Y. Thermal characterization of polylactides. Polymer 1988; 29(12): 2229–2234. doi: 10.1016/0032-3861(88)90116-4
23. Liu X, Zou Y, Li W, et al. Kinetics of thermo-oxidative and thermal degradation of poly(D,L-lactide) (PDLLA) at processing temperature. Polymer Degradation and Stability 2006; 91(12): 3259–3265. doi: 10.1016/j.polymdegradstab.2006.07.004
24. Acierno S, Van Puyvelde P. Rheological behavior of polyamide 11 with varying initial moisture content. Journal of Applied Polymer Science 2005; 97(2): 666–670. doi: 10.1002/app.21810