Published
2024-08-07
Section
Original Research Article
License
Copyright (c) 2024 Shyam K. Dabhi, Vimal R. Patel, Dileep Kumar M, Keelagaram Gunaprasad, T C Manjunath, Ibrahim Abdallah Ismail Hassan, Nageswara Rao Lakkimsetty, Feroz Shaik, Natrayan L
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Application of solar thermal collectors for milk pasteurization to explore the potential of renewable energy in the dairy sector: Challenges and possibilities
Shyam K. Dabhi
Vimal R. Patel
Dileep Kumar M
Keelagaram Gunaprasad
T C Manjunath
Ibrahim Abdallah Ismail Hassan
Nageswara Rao Lakkimsetty
Feroz Shaik
Natrayan L
DOI: https://doi.org/10.59429/ace.v7i3.5501
Abstract
Dairy farming has become a key business to fulfill the daily milk needs in populated countries like India. Conversely, pathogenic and spoilage microorganisms in raw milk are killed by applying different heat treatments to increase shelf life, preserve quality, and ensure safety. Among the heat treatment processes used at the dairy plant, pasteurization consumes a significant amount of heat, which increases the energy demand in the dairy sector. Since milk pasteurization occurs between 65°C and 150°C, multiple solar thermal collector alternatives are available for various kinds of pasteurization processes. Employing solar thermal collectors for milk pasteurization allows the dairy sector to use free solar energy. Solar energy in milk heat treatments minimizes fuel and power consumption, reducing carbon emissions and promoting sustainability. However, solar milk pasteurization in dairy sector is limited by the large area requirement, high initial cost, and weather dependency. There have been attempts to use different types of solar thermal collectors to pasteurize the milk in an effort to replace conventional energy usage with solar energy. The parameters of milk heat treatment, primarily pasteurization, have been discussed concerning energy usage. The benefits and limitations of various solar collectors for milk pasteurization and other heating applications in the dairy sector have been addressed. Multiple studies on integrating various solar thermal collectors with different pasteurization systems have been reviewed, summarized, and concluded.
References
[1]. Ministry of fisheries animal husbandry & dairying: Government of India, Basic Animal Husbandry Statistics-2023, India, 2023. https://dahd.nic.in/schemes/programmes/animal-husbandry-statistics (accessed April 19, 2024).
[2]. A. Sur, R.P. Sah, S. Pandya, Milk storage system for remote areas using solar thermal energy and adsorption cooling, Mater Today Proc 28 (2020) 1764–1770. https://doi.org/10.1016/j.matpr.2020.05.170.
[3]. Ministry of Fisheries Animal Husbandry & Dairying, Milk Production in India: The Journey of India’s Dairy Sector, Press Information Bureau Government of India, New Delhi, India, 2022. https://pib.gov.in/FeaturesDeatils.aspx?NoteId=151137 (accessed April 11, 2024).
[4]. T. Hemme, A. Shah, P. Tripathi, Dairy Farming in India, A Global Comparison, Germany, 2015. https://www.yesbank.in/beyond-banking/research/food-and-agriculture#:~:text=DAIRY%20FARMING%20IN%20INDIA%3A%20A,milk%20with%2017%25%20global%20share. (accessed April 11, 2024).
[5]. J.R. Stabel, On-Farm Batch Pasteurization Destroys Mycobacterium paratuberculosis in Waste Milk, J Dairy Sci 84 (2001) 524–527. https://doi.org/10.3168/jds.S0022-0302(01)74503-1.
[6]. P. Walstra, T.J. Geurts, A. Noomen, A. Jellema, M.A.J.S. van Boekel, Dairy Technology: Principles of Milk Properties and Processes, Marcel Dekker, Inc., 1999.
[7]. R.K. Robinson, ed., Modern Dairy Technology: Advances in Milk Processing, 2nd ed., Chapman & Hall, 1994. https://doi.org/10.1007/978-1-4615-2057-3.
[8]. A.Y. Tamime, Milk Processing and Quality Management, 1st ed., Blackwell Publishing Ltd., UK, 2009. https://doi.org/10.1002/9781444301649.
[9]. J.A. Quijera, M.G. Alriols, J. Labidi, Integration of a solar thermal system in a dairy process, Renew Energy 36 (2011) 1843–1853. https://doi.org/10.1016/j.renene.2010.11.029.
[10]. N. Yildirim, S. Genc, Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy, Energy 90 (2015) 987–996. https://doi.org/10.1016/j.energy.2015.08.003.
[11]. K. Masera, H. Tannous, V. Stojceska, S. Tassou, An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes, Renewable and Sustainable Energy Reviews 172 (2023) 1–10. https://doi.org/10.1016/j.rser.2022.113028.
[12]. H. Panchal, R. Patel, S. Chaudhary, D.K. Patel, R. Sathyamurthy, T. Arunkumar, Solar energy utilisation for milk pasteurisation : A comprehensive review, Renewable and Sustainable Energy Reviews 92 (2018) 1–8. https://doi.org/10.1016/j.rser.2018.04.068.
[13]. H. Panchal, J. Patel, S. Chaudhary, A Comprehensive Review of Solar Milk Pasteurization System, Journal of Solar Energy Engineering, Transactions of the ASME 140 (2018). https://doi.org/10.1115/1.4038505.
[14]. H. Panchal, R. Patel, K.D. Parmar, Application of solar energy for milk pasteurisation: a comprehensive review for sustainable development, International Journal of Ambient Energy 41 (2020) 117–120. https://doi.org/10.1080/01430750.2018.1432503.
[15]. K.R. Morison, J.P. Phelan, C.G. Bloore, Viscosity and non-newtonian behaviour of concentrated milk and cream, Int J Food Prop 16 (2013) 882–894. https://doi.org/10.1080/10942912.2011.573113.
[16]. V. Kumbar, S. Nedomova, Viscosity and Analytical Differences between Raw Milk and UHT Milk of Czech Cows, Scientia Agriculturae Bohemica 46 (2015) 78–83. https://doi.org/10.1515/sab-2015-0020.
[17]. A.S. Bakshi, D.E. Smith, Effect of Fat Content and Temperature on Viscosity in Relation to Pumping Requirements of Fluid Milk Products, J Dairy Sci 67 (2010) 1157–1160. https://doi.org/10.3168/jds.s0022-0302(84)81417-4.
[18]. C.P. Cox, Changes with temperature in the viscosity of whole milk, Journal of Dairy Research 19 (1952) 72–82. https://doi.org/10.1017/s0022029900006282.
[19]. L.A. Minim, J.S.R. Coimbra, V.P.R. Minim, J. Telis-Romero, Influence of temperature and water and fat contents on the thermophysical properties of milk, J Chem Eng Data 47 (2002) 1488–1491. https://doi.org/10.1021/je025546a.
[20]. A.H. Chaudhary, H.G. Patel, P.S. Prajapati, J.P. Prajapati, Standardization of Fat:SNF ratio of milk and addition of sprouted wheat fada (semolina) for the manufacture of halvasan, J Food Sci Technol 52 (2015) 2296–2303. https://doi.org/10.1007/s13197-013-1205-6.
[21]. J. Bon, G. Clemente, H. Vaquiro, A. Mulet, Simulation and optimization of milk pasteurization processes using a general process simulator (ProSimPlus), Comput Chem Eng 34 (2010) 414–420. https://doi.org/10.1016/j.compchemeng.2009.11.013.
[22]. L.E. Pearce, B.W. Smythe, R.A. Crawford, E. Oakley, S.C. Hathaway, J.M. Shepherd, Pasteurization of milk : The heat inactivation kinetics of milk-borne dairy pathogens under commercial-type conditions of turbulent flow, J Dairy Sci 95 (2012) 20–35. https://doi.org/10.3168/jds.2011-4556.
[23]. A. Kameni, H. Imele, N.J. Mbanya, An alternative heat treatment for milk pasteurization in Cameroon, Int J Dairy Technol 55 (2002) 40–43. https://doi.org/https://doi.org/10.1046/j.1364-727X.2001.00038.x.
[24]. Y. Ma, D.M. Barbano, Milk pH as a Function of CO 2 Concentration, Temperature, and Pressure in a Heat Exchanger, J Dairy Sci 86 (2003) 3822–3830. https://doi.org/10.3168/jds.S0022-0302(03)73989-7.
[25]. R.S. Mehta, Milk Processed at Ultra-High-Temperatures - A Review, J Food Prot 43 (1980) 212–225. https://doi.org/10.4315/0362-028X-43.3.212.
[26]. I. Birlouez-Aragon, P. Sabat, N. Gouti, A new method for discriminating milk heat treatment, Int Dairy J 12 (2002) 59–67. https://doi.org/https://doi.org/10.1016/S0958-6946(01)00131-5.
[27]. A. Hudson, T. Wong, R. Lake, Pasteurisation of dairy products: times, temperatures and evidence for control of pathogens, New Zealand, New Zealand, 2003. https://www.mpi.govt.nz/dmsdocument/25877-Pasteurisation-of-dairy-products-Times-temperatures-and-evidence-for-control-of-pathogens (accessed November 30, 2023).
[28]. B.M. Lund, G.W. Gould, A.M. Rampling, Pasteurization of milk and the heat resistance of Mycobacterium avium subsp. paratuberculosis : a critical review of the data, Int J Food Microbiol 77 (2002) 135–145. https://doi.org/https://doi.org/10.1016/S0168-1605(02)00057-0.
[29]. A. Modi, R. Prajapat, Pasteurization process energy optimization for a milk dairy plant by energy audit approach, International Journal of Scientific & Technology Research 3 (2014) 181–188. http://www.ijstr.org/final-print/june2014/Pasteurization-Process-Energy-Optimization-For-A-Milk-Dairy-Plant-By-Energy-Audit-Approach.pdf (accessed April 29, 2024).
[30]. F. Morales, C. Romero, S. Jimenez-perez, Characterization of industrial processed milk by analysis of heat-induced changes, Int J Food Sci Technol 35 (2000) 193–200. https://doi.org/https://doi.org/10.1046/j.1365-2621.2000.00334.x.
[31]. C.O. Ball, Short-time pasteurization of milk, Industrial and Engineering Chemestry 35 (1943) 71–84. https://doi.org/https://doi.org/10.1021/ie50397a017.
[32]. F. Melini, V. Melini, F. Luziatelli, M. Ruzzi, Raw and heat-treated milk: From public health risks to nutritional quality, Beverages 3 (2017). https://doi.org/10.3390/beverages3040054.
[33]. Australia New Zealand Food standards Code, Primary Production and Processing Standard for Dairy Products, 3: Dairy Processing (2009). https://www.foodstandards.gov.au/code/userguide/documents/WEB%20Dairy%20Processing.pdf (accessed November 29, 2023).
[34]. O. Comakli, B. Yuksel, Y.A. Kara, A. Caglar, Y. Tulek, Heat pump utilization in milk pasteurization, Energy Convers Manag 35 (1994) 91–96. https://doi.org/https://doi.org/10.1016/0196-8904(94)90067-1.
[35]. M. Indumathy, S. Sobana, R.C. Panda, Identification of high temperature short time milk pasteurization unit, J Food Process Eng 43 (2020). https://doi.org/https://doi.org/10.1111/jfpe.13410.
[36]. Confederation of Indian Industry, Tamil Nadu Dairy Cluster Technology Compendium for Energy Efficiency and Renewable Energy Opportunities in Dairy Sector, 2020. https://www.industrialenergyaccelerator.org/wp-content/uploads/Technology-Compendium-Gujarat-Dairy-Cluster_resized.pdf (accessed April 24, 2024).
[37]. S.N. Husnain, W. Amjad, A. Munir, O. Hensel, Energy and Exergy Based Thermal Analysis of a Solar Assisted Yogurt Processing Unit, Front Energy Res 10 (2022). https://doi.org/10.3389/fenrg.2022.887639.
[38]. K. Masera, H. Tannous, V. Stojceska, S. Tassou, Application of Solar Thermal Heating and Cooling Energy to Dairy Processes: A Case Study, in: 17th UK Heat Transfer Conference (UKHTC2021), The University of Manchester, UK, Manchester, UK, 2022: pp. 1–6. http://cfd.mace.manchester.ac.uk/ukhtc21-proc/papers/O-14-2.pdf (accessed April 24, 2024).
[39]. T. Hernández, D. Roche, Thermal Energy Consumption Assessment in a Fluid Milk Plant, Trends Journal of Sciences Research 2 (2022) 13–21. https://doi.org/10.31586/ojes.2022.392.
[40]. S. Kalogirou, The potential of solar industrial process heat applications, Appl Energy 76 (2003) 337–361. https://doi.org/10.1016/S0306-2619(02)00176-9.
[41]. G. Riva, Utilization of renewable energy sources and energy-saving technologies by small-scale milk plants and collection centres, Food And Agriculture Organization of The United Nations, Italy, 1992. https://www.fao.org/3/t0515e/T0515E00.htm#TOC (accessed April 24, 2024).
[42]. J. Wojdalski, P. Ligenza, M. Postula, B. Drozdz, R. Niznikowski, Determinants of Energy Consumption in the Dairy Industry: A Case Study in Poland, Environmental Protection and Natural Resources 0 (2024). https://doi.org/10.2478/oszn-2023-0017.
[43]. O. Ozyurt, O. Comakli, M. Yilmaz, S. Karsli, Heat pump use in milk pasteurization: An energy analysis, Int J Energy Res 28 (2004) 833–846. https://doi.org/10.1002/er.999.
[44]. V. Kazimirova, Heat Consumption and Quality of Milk Pasteurization, Acta Technologica Agriculturae 16 (2013) 55–58. https://doi.org/10.2478/ata-2013-0014.
[45]. A. Kotb, M.B. Elsheniti, O.A. Elsamni, Optimum number and arrangement of evacuated-tube solar collectors under various operating conditions, Energy Convers Manag 199 (2019) 112032. https://doi.org/10.1016/j.enconman.2019.112032.
[46]. S. Kumar, N. Kumar, D. Rakshit, A comprehensive analysis on advances in application of solar collectors considering design , process and working fluid parameters for solar to thermal conversion, Solar Energy 208 (2020) 1114–1150. https://doi.org/10.1016/j.solener.2020.08.042.
[47]. S.A. Kalogirou, Solar thermal collectors and applications, Prog Energy Combust Sci 30 (2004) 231–295. https://doi.org/10.1016/j.pecs.2004.02.001.
[48]. A.K. Sharma, C. Sharma, S.C. Mullick, T.C. Kandpal, Solar industrial process heating: A review, Renewable and Sustainable Energy Reviews 78 (2017) 124–137. https://doi.org/10.1016/j.rser.2017.04.079.
[49]. Nielsen, K. Mølgaard, Pedersen, T. Søndergård, Solar Panel based Milk Pasteurization, in: R. Gantenbein, S. Shin (Eds.), ISCA 2002 - 17th International Conference Computers and Their Applications, San Francisco, USA, 2002: pp. 376–379. https://vbn.aau.dk/en/publications/solar-panel-based-milk-pasteurization (accessed April 30, 2024).
[50]. F.O. Wayua, M.W. Okoth, J. Wangoh, Design and performance assessment of a flat-plate solar milk pasteurizer for arid pastoral areas of kenya, J Food Process Preserv 37 (2013) 120–125. https://doi.org/https://doi.org/10.1111/j.1745-4549.2011.00628.x.
[51]. F.O. Wayua, M.W. Okoth, J. Wangoh, Modeling of a locally fabricated flat-plate solar milk pasteuriser using artificial neural network, Afr J Agric Res 8 (2013) 741–749.
[52]. S.A. Mutasher, S. Vishnupriyan, M. Saleem, A. Khaldi, K. Ali, A. Saidi, Design and Development of Solar Milk Pasteurizer, in: CAS Annual Symposium - The Fourth Industrial Revolution Symposium (FIR2019): Applications and Practices in Applied and Social Sciences, College of Applied Sciences, Ministry of Higher Education, Oman, 2019. https://independent.academia.edu/DrSaadAljaberi (accessed April 30, 2024).
[53]. H. Panchal, R. Patel, R. Sathyamurthy, Investigation and performance analysis of solar milk pasteurisation system, International Journal of Ambient Energy 42 (2019) 522–529. https://doi.org/10.1080/01430750.2018.1557552.
[54]. S. Tigabe, A. Bekele, V. Pandey, Performance Analysis of the Milk Pasteurization Process Using a Flat Plate Solar Collector, Journal of Engineering 2022 (2022) 1–13. https://doi.org/10.1155/2022/6214470.
[55]. M. Eltaweel, A.A. Abdel-Rehim, Energy and exergy analysis for stationary solar collectors using nanofluids: A review, Int J Energy Res 45 (2021) 3643–3670. https://doi.org/10.1002/er.6107.
[56]. M. Amar, N. Akram, G.Q. Chaudhary, S.N. Kazi, M.E.M. Soudagar, N.M. Mubarak, M.A. Kalam, Energy, exergy and economic (3E) analysis of flat-plate solar collector using novel environmental friendly nanofluid, Sci Rep 13 (2023). https://doi.org/10.1038/s41598-023-27491-w.
[57]. N.I.S. Azha, H. Hussin, M.S. Nasif, T. Hussain, Thermal performance enhancement in flat plate solar collector solar water heater: A review, Processes 8 (2020). https://doi.org/10.3390/PR8070756.
[58]. A.R. Kalair, M. Seyedmahmoudian, M.S. Saleem, N. Abas, S. Rauf, A. Stojcevski, A Comparative Thermal Performance Assessment of Various Solar Collectors for Domestic Water Heating, International Journal of Photoenergy 2022 (2022). https://doi.org/10.1155/2022/9536772.
[59]. J.A. Quijera, J. Labidi, Pinch and exergy based thermosolar integration in a dairy process, Appl Therm Eng 50 (2013) 464–474. https://doi.org/10.1016/j.applthermaleng.2012.06.044.
[60]. M. Lazaar, H. Boughanmi, S. Bouadila, M. Jarraya, Parametric study of plate heat exchanger for eventual use in a solar pasteurization process designed for small milk collection centers in Tunisia, Sustainable Energy Technologies and Assessments 45 (2021). https://doi.org/10.1016/j.seta.2021.101174.
[61]. G. Ramkumar, B. Arthi, S.D.S. Jebaseelan, M. Gopila, P. Bhuvaneswari, R. Radhika, G.G. Kailo, Implementation of Solar Heat Energy and Adsorption Cooling Mechanism for Milk Pasteurization Application, Adsorption Science and Technology 2022 (2022). https://doi.org/10.1155/2022/5125931.
[62]. H. Olfian, S.S.M. Ajarostaghi, M. Ebrahimnataj, Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids, Solar Energy 211 (2020) 265–282. https://doi.org/10.1016/j.solener.2020.09.056.
[63]. M.A. Sabiha, R. Saidur, S. Mekhilef, O. Mahian, Progress and latest developments of evacuated tube solar collectors, Renewable and Sustainable Energy Reviews 51 (2015) 1038–1054. https://doi.org/10.1016/j.rser.2015.07.016.
[64]. S. Aggarwal, R. Kumar, D. Lee, S. Kumar, T. Singh, A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors, Heliyon 9 (2023) e15185. https://doi.org/10.1016/j.heliyon.2023.e15185.
[65]. S. Qiu, M. Ruth, S. Ghosh, Evacuated tube collectors: A notable driver behind the solar water heater industry in China, Renewable and Sustainable Energy Reviews 47 (2015) 580–588. https://doi.org/10.1016/j.rser.2015.03.067.
[66]. M.M. Pandey, C.P. Gupta, Pasteurization of Milk by Solar Energy, Sun: Mankind’s Future Source of Energy, Proceedings of the International Solar Energy Society Congress 3 (1978) 2167–2170. https://doi.org/10.1016/B978-1-4832-8407-1.50425-6.
[67]. J. Franco, L. Saravia, V. Javi, R. Caso, C. Fernandez, Pasteurization of goat milk using a low cost solar concentrator, Solar Energy 82 (2008) 1088–1094. https://doi.org/10.1016/j.solener.2007.10.011.
[68]. A. Alkasim, D. Andrew, Design, Construction and Implementation of a Solar Parabolic Dish Milk Pasteurizer in Yola, Nigeria, International Journal of Engineering Science Invention 4 (2020) 40–49. https://www.ijesi.org/v9i4(series-1).html (accessed April 30, 2024).
[69]. B. Setiawan, R.N. Wakidah, Yulianto, Reflective array solar water heater for milk pasteurization, Environmental Research, Engineering and Management 76 (2020) 131–137. https://doi.org/10.5755/j01.erem.76.4.24411.
[70]. R. Zahira, H. Akif, N. Amin, M. Azam and, Zai-ul-Haq, Fabrication and performance study of a solar milk pasteurizer, Pak J Agric Sci 46 (2009) 162–170. https://api.pakjas.com.pk/downloadPaper/114.pdf (accessed April 2, 2024).
[71]. K.S. Khan, Y. Latif, A. Munir, O. Hensel, Comparative thermal analyses of solar milk pasteurizers integrated with solar concentrator and evacuated tube collector, Energy Reports 8 (2022) 7917–7930. https://doi.org/https://doi.org/10.1016/j.egyr.2022.06.001.
[72]. M.I. Ismail, N.A. Yunus, H. Hashim, Integration of solar heating systems for low-temperature heat demand in food processing industry – A review, Renewable and Sustainable Energy Reviews 147 (2021). https://doi.org/10.1016/j.rser.2021.111192.
[73]. L. Zhou, Y. Li, E. Hu, J. Qin, Y. Yang, Comparison in net solar efficiency between the use of concentrating and non-concentrating solar collectors in solar aided power generation systems, Appl Therm Eng 75 (2015) 685–691. https://doi.org/10.1016/j.applthermaleng.2014.09.063.
[74]. J. Qin, E. Hu, G.J. Nathan, L. Chen, Concentrating or non-concentrating solar collectors for solar Aided Power Generation?, Energy Convers Manag 152 (2017) 281–290. https://doi.org/10.1016/j.enconman.2017.09.054.
[75]. N. Kincaid, G. Mungas, N. Kramer, M. Wagner, G. Zhu, An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver, Appl Energy 231 (2018) 1109–1121. https://doi.org/10.1016/j.apenergy.2018.09.153.
[76]. A.K. Sharma, C. Sharma, S.C. Mullick, T.C. Kandpal, Financial viability of solar industrial process heating and cost of carbon mitigation: A case of dairy industry in India, Sustainable Energy Technologies and Assessments 27 (2018) 1–8. https://doi.org/10.1016/j.seta.2018.03.007.
[77]. A.K. Tiwari, K. Chatterjee, S. Agrawal, G.K. Singh, A comprehensive review of photovoltaic-thermal (PVT) technology: Performance evaluation and contemporary development, Energy Reports 10 (2023) 2655–2679. https://doi.org/10.1016/j.egyr.2023.09.043.
[78]. A. Herez, H. El Hage, T. Lemenand, M. Ramadan, M. Khaled, Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems, Solar Energy 207 (2020) 1321–1347. https://doi.org/10.1016/j.solener.2020.07.062.
[79]. S. Akmese, G. Omeroglu, O. Comakli, Photovoltaic thermal (PV/T) system assisted heat pump utilization for milk pasteurization, Solar Energy 218 (2021) 35–47. https://doi.org/10.1016/j.solener.2021.02.014.
[80]. M. Meraj, S.M. Mahmood, M.E. Khan, M. Azhar, G.N. Tiwari, Effect of N-Photovoltaic thermal integrated parabolic concentrator on milk temperature for pasteurization: A simulation study, Renew Energy 163 (2021) 2153–2164. https://doi.org/10.1016/j.renene.2020.10.103.
[81]. V. Ngunzi, F. Njoka, R. Kinyua, Modeling, simulation and performance evaluation of a PVT system for the Kenyan manufacturing sector, Heliyon 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e18823.
[82]. E. Touti, M. Masmali, M. Fterich, H. Chouikhi, Experimental and numerical study of the PVT design impact on the electrical and thermal performances, Case Studies in Thermal Engineering 43 (2023). https://doi.org/10.1016/j.csite.2023.102732.
[83]. R.W. Moss, P. Henshall, F. Arya, G.S.F. Shire, T. Hyde, P.C. Eames, Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels, Appl Energy 216 (2018) 588–601. https://doi.org/10.1016/j.apenergy.2018.01.001.
[84]. K. Tabet Aoul, A. Hassan, A.H. Shah, H. Riaz, Energy performance comparison of concentrated photovoltaic – Phase change material thermal (CPV-PCM/T) system with flat plate collector (FPC), Solar Energy 176 (2018) 453–464. https://doi.org/10.1016/j.solener.2018.10.039.