Published
2024-08-29
Section
Original Research Article
License
Copyright (c) 2024 Nedjma Lahmar, Mokhtar Djehiche, Alexandre Tomas, Marwa Bachiri, Samir Bouacha
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Effect of water matrix on sulfate radical behavior during BTB degradation by activated persulfate
Nedjma Lahmar
Inorganic Materials Laboratory, University Pole, Road Bordj Bou Arreridj, M'sila 28000 Algeria
https://orcid.org/0009-0005-1849-0751
Mokhtar Djehiche
Inorganic Materials Laboratory, University Pole, Road Bordj Bou Arreridj, M'sila 28000 Algeria
https://orcid.org/0000-0002-3439-113X
Alexandre Tomas
Institut Mines-Télécom Nord Europe, Univ. Lille, Center for Energy and Environment, F-59000, Lille, France
https://orcid.org/0000-0002-0125-581X
Marwa Bachiri
Inorganic Materials Laboratory, University Pole, Road Bordj Bou Arreridj, M'sila 28000 Algeria
https://orcid.org/0009-0006-1133-5801
Samir Bouacha
Inorganic Materials Laboratory, University Pole, Road Bordj Bou Arreridj, M'sila 28000 Algeria
https://orcid.org/0000-0002-8308-4363
DOI: https://doi.org/10.59429/ace.v7i3.5509
Abstract
One of the primary constraints on the use of activated persulfate (PS), a precursor of the sulfate radical (SR), is a lack of understanding of its reaction pathways in the subsurface. SRs can degrade the target dye Bromothymol Blue (BTB) depending on several parameters, including the initial concentrations of PS and BTB, time, water salts cations (Na+ and K+), ionic strength, catalytic ions (), and temperature. Experiments and numerical simulations using the established kinetic model yielded second-order rate constants for the reaction of BTB with the dominant SR at pH 3 of (1.1 ± 0.55) × 108, ((1.5 ± 0.77) × 108, (1.9 ± 0.95) × 108 and (2.2 ± 1.1) × 108 M-1 s-1 at 40, 50, 60, and 70°C, respectively. These rate constants were used to calculate the kinetic activation parameters (Ea, ∆H≠, ∆S≠, ∆G≠) according to the Arrhenius and Eyring equations. The results obtained are as follows: 19.8 kJ mol-1, 16.36 kJ mol-1, - 0.038 kJ mol-1 K-1, and 27.78 kJ mol-1. Finally, a possible mechanism for the discoloration of BTB by SR is proposed, in which the destruction of aromatic ring structures occurs alongside the discoloration of BTB.
References
[1]. Maheshwari K, Agrawal M, Gupta AB. Dye pollution in water and wastewater. In: novel materials for dye-containing wastewater treatment. (Muthu SS, Khadir A. eds). Sustainable Textiles: Production, Processing, Manufacturing & Chemistry Springer Singapore: Singapore; 2021; pp. 1–25; doi: 10.1007/978-981-16-2892-4_1.
[2]. Li N, Wu S, Dai H, et al. Thermal activation of persulfates for organic wastewater purification: heating modes, mechanism and influencing factors. Chem Eng J 2022;450:137976; doi: 10.1016/j.cej.2022.137976.
[3]. Wang J, Wang S. Removal of pharmaceuticals and personal care products (ppcps) from wastewater: A review. J Environ Manage 2016;182:620–640; doi: 10.1016/j.jenvman.2016.07.049.
[4]. Pavithra KG, P. SK, V. J, et al. Removal of colorants from wastewater: a review on sources and treatment strategies. J Ind Eng Chem 2019;75:1–19; doi: 10.1016/j.jiec.2019.02.011.
[5]. Giasuddin ABM, Kanel SR, Choi H. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 2007;41:2022–2027; doi: 10.1021/es0616534.
[6]. De Meyer T, Steyaert I, Hemelsoet K, et al. Halochromic properties of sulfonphthaleine dyes in a textile environment: the influence of substituents. Dyes Pigments 2016;124:249–257; doi: 10.1016/j.dyepig.2015.09.007.
[7]. Thomas O, Brogat M. Organic Constituents. In: UV-Visible spectrophotometry of waters and soils Elsevier; 2022; pp. 95–160; doi: 10.1016/B978-0-323-90994-5.00006-X.
[8]. Van der Schueren L, De Clerck K. Textile materials with a pH‐sensitive function. Sariişik M. ed. Int J Cloth Sci Technol 2011;23:269–274; doi: 10.1108/09556221111136539.
[9]. Soukeur A, Kaci MM, Omeiri S, et al. Photocatalytic degradation of bromothymol blue over MgFe2O4 under sunlight exposure. Opt Mater 2023;142:114108; doi: 10.1016/j.optmat.2023.114108.
[10]. Ibrahim SM, Al-Hossainy AF. Synthesis, structural characterization, DFT, kinetics and mechanism of oxidation of bromothymol blue: application to textile industrial wastewater treatment. Chem Pap 2021;75:297–309; doi: 10.1007/s11696-020-01299-8.
[11]. Matzek LW, Carter KE. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016;151:178–188; doi: 10.1016/j.chemosphere.2016.02.055.
[12]. Ma J, Li H, Chi L, et al. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 2017;189:86–93; doi: 10.1016/j.chemosphere.2017.09.051.
[13]. Ahmadi S, Igwegbe CA, Rahdar S. The application of thermally activated persulfate for degradation of acid blue 92 in aqueous solution. Int J Ind Chem 2019;10:249–260; doi: 10.1007/s40090-019-0188-1.
[14]. Yang B, Luo Q, Li Q, et al. Selective oxidation and direct decolorization of cationic dyes by persulfate without activation. Water Sci Technol 2021;83(11):2744–2752; doi: 10.2166/wst.2021.177.
[15]. Giannakis S, Lin K-YA, Ghanbari F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J 2021;406:127083; doi: 10.1016/j.cej.2020.127083.
[16]. Lian L, Yao B, Hou S, et al. Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environ Sci Technol 2017;51(5):2954–2962; doi: 10.1021/acs.est.6b05536.
[17]. Furman OS, Teel AL, Watts RJ. Mechanism of base activation of persulfate. Environ Sci Technol 2010;44:6423–6428; doi: 10.1021/es1013714.
[18]. Liang C-J, Huang S-C. Kinetic model for sulfate/hydroxyl radical oxidation of methylene blue in a thermally-activated persulfate system at various pH and temperatures. Sustain Env Res 2012;199–208.
[19]. Mora VC, Rosso JA, Carrillo Le Roux G, et al. Thermally activated peroxydisulfate in the presence of additives: A clean method for the degradation of pollutants. Chemosphere 2009;75:1405–1409; doi: 10.1016/j.chemosphere.2009.02.038.
[20]. El-Bestawy EA, Gaber M, Shokry H, et al. Effective degradation of atrazine by spinach-derived biochar via persulfate activation system: Process optimization, mechanism, degradation pathway and application in real wastewater. Environ Res 2023;229:115987; doi: 10.1016/j.envres.2023.115987.
[21]. Habibi M, Habibi-Yangjeh A, Pouran SR, et al. Visible-light-triggered persulfate activation by CuCo2S4 modified ZnO photocatalyst for degradation of tetracycline hydrochloride. Colloids Surf Physicochem Eng Asp 2022;642:128640; doi: 10.1016/j.colsurfa.2022.128640.
[22]. Li N, Wang Y, Cheng X, et al. Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: A review. Water Res 2022;222:118896; doi: 10.1016/j.watres.2022.118896.
[23]. Bing W, Wei W. Degradation phenol wastewater by heating activated persulfate. Int J Environ Monit Anal 2019;7:14; doi: 10.11648/j.ijema.20190701.12.
[24]. Wang Z, Qiu W, Pang S, et al. Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Res 2020;172:115504; doi: 10.1016/j.watres.2020.115504.
[25]. Dong H, He Q, Zeng G, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA. Chem Eng J 2017;316:410–418; doi: 10.1016/j.cej.2017.01.118.
[26]. Hou S, Ling L, Shang C, et al. Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process. Chem Eng J 2017;320:478–484; doi: 10.1016/j.cej.2017.03.042.
[27]. Ghauch A, Baalbaki A, Amasha M, et al. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem Eng J 2017;317:1012–1025; doi: 10.1016/j.cej.2017.02.133.
[28]. Dhaka S, Kumar R, Khan MA, et al. Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chem Eng J 2017;321:11–19; doi: 10.1016/j.cej.2017.03.085.
[29]. Miao D, Zhao S, Zhu K, et al. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. Chemosphere 2020;253:126679; doi: 10.1016/j.chemosphere.2020.126679.
[30]. Gao Y, Gao N, Wang W, et al. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water. Ultrason Sonochem 2018;49:33–40; doi: 10.1016/j.ultsonch.2018.07.001.
[31]. Matzek LW, Tipton MJ, Farmer AT, et al. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement. Environ Sci Technol 2018;52:5875–5883; doi: 10.1021/acs.est.8b00015.
[32]. Santos A, Fernandez J, Rodriguez S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci Total Environ 2018;615:1070–1077; doi: 10.1016/j.scitotenv.2017.09.224.
[33]. Koltsakidou Α, Antonopoulou M, Εvgenidou Ε, et al. A comparative study on the photo-catalytic degradation of Cytarabine anticancer drug under Fe3+/H2O2, Fe3+/S2O82−, and [Fe(C2O4)3]3−/H2O2 processes. Kinetics, identification, and in silico toxicity assessment of generated transformation products. Environ Sci Pollut Res 2019;26:7772–7784; doi: 10.1007/s11356-018-4019-2.
[34]. Arvaniti OS, Ioannidi AA, Mantzavinos D, et al. Heat-activated persulfate for the degradation of micropollutants in water: A comprehensive review and future perspectives. J Environ Manage 2022;318:115568; doi: 10.1016/j.jenvman.2022.115568.
[35]. Sipilä K. Cogeneration, biomass, waste to energy and industrial waste heat for district heating. In: Advanced District Heating and Cooling (DHC) Systems Elsevier; 2016; pp. 45–73; doi: 10.1016/B978-1-78242-374-4.00003-3.
[36]. Sakulthaew C, Chokejaroenrat C, Satapanajaru T, et al. Removal of 17β-estradiol using persulfate synergistically activated using heat and ultraviolet light. Water Air Soil Pollut 2020;231(5):247; doi: 10.1007/s11270-020-04571-5.
[37]. Liu X, Wang Z, Liang H, et al. Solar-Driven soil remediation along with the generation of water vapor and electricity. Nanomaterials 2022;12(11):1800; doi: 10.3390/nano12111800.
[38]. Mekhilef S, Faramarzi SZ, Saidur R, et al. The application of solar technologies for sustainable development of agricultural sector. Renew Sustain Energy Rev 2013;18:583–594; doi: 10.1016/j.rser.2012.10.049.
[39]. Wacławek S, Lutze HV, Grübel K, et al. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J 2017;330:44–62; doi: 10.1016/j.cej.2017.07.132.
[40]. House DA. kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 1962;62:185–203; doi: 10.1021/cr60217a001.
[41]. Chen W-S, Huang C-P. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 2015;125:175–181; doi: 10.1016/j.chemosphere.2014.12.053.
[42]. Shuchi SB, Suhan MdBK, Humayun SB, et al. Heat-activated potassium persulfate treatment of sudan black b dye: Degradation kinetic and thermodynamic studies. J Water Process Eng 2021;39:101690; doi: 10.1016/j.jwpe.2020.101690.
[43]. Sonawane S, Rayaroth MP, Landge VK, et al. Thermally activated persulfate-based advanced oxidation processes — recent progress and challenges in mineralization of persistent organic chemicals: a review. Curr Opin Chem Eng 2022;37:100839; doi: 10.1016/j.coche.2022.100839.
[44]. Zhou T, Du J, Wang Z, et al. Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: Kinetics, synergistic effect and reaction mechanism. Chem Eng J Adv 2022;9:100200; doi: 10.1016/j.ceja.2021.100200.
[45]. Liu Y, Wang S, Wu Y, et al. Degradation of ibuprofen by thermally activated persulfate in soil systems. Chem Eng J 2019;356:799–810; doi: 10.1016/j.cej.2018.09.002.
[46]. Anipsitakis GP, Dionysiou DD. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 2004;38:3705–3712; doi: 10.1021/es035121o.
[47]. Anipsitakis GP, Dionysiou DD. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B Environ 2004;54(3):155–163; doi: 10.1016/j.apcatb.2004.05.025.
[48]. Wei L, Xia X, Zhu F, et al. Dewatering efficiency of sewage sludge during Fe2+-activated persulfate oxidation: Effect of hydrophobic/hydrophilic properties of sludge EPS. Water Res 2020;181:115903; doi: 10.1016/j.watres.2020.115903.
[49]. Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 2006;36(1):1–84; doi: 10.1080/10643380500326564.
[50]. Lu J, Wu J, Ji Y, et al. Transformation of bromide in thermo activated persulfate oxidation processes. Water Res 2015;78:1–8; doi: 10.1016/j.watres.2015.03.028.
[51]. Chiron S, Minero C, Vione D. Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the rhône river delta (southern france). Environ Sci Technol 2007;41(9):3127–3133; doi: 10.1021/es0626638.
[52]. Ma J, Ding Y, Chi L, et al. Degradation of benzotriazole by sulfate radical-based advanced oxidation process. Environ Technol 2021;42(2):238–247; doi: 10.1080/09593330.2019.1625959.
[53]. Ibrahim SM, Al-Hossainy AF. Kinetics and mechanism of oxidation of bromothymol blue by permanganate ion in acidic medium: Application to textile industrial wastewater treatment. J Mol Liq 2020;318:114041; doi: 10.1016/j.molliq.2020.114041.
[54]. Al‐Hossainy AF, Ibrahim SM. Oxidation process and kinetics of bromothymol blue by alkaline permanganate. Int J Chem Kinet 2021;53:675–684; doi: 10.1002/kin.21473.
[55]. Maamar M, Naimi I, Mkadem Y, et al. Electrochemical oxidation of bromothymol blue: application to textile industrial wastewater treatment. J Adv Oxid Technol 2015;18(1); doi: 10.1515/jaots-2015-0113.
[56]. Bouanimba N, Laid N, Zouaghi R, et al. A comparative study of the activity of tio2 degussa p25 and millennium pcs in the photocatalytic degradation of bromothymol blue. Int J Chem React Eng 2018;16; doi: 10.1515/ijcre-2017-0014.
[57]. Machado PR, Soeira TVR, Pagan FDS, et al. Synergistic bromothymol blue dye degradation with hydrodynamic cavitation and hydrogen peroxide (HC-H2O2). Ambiente E Agua - Interdiscip J Appl Sci 2020;15:1; doi: 10.4136/ambi-agua.2518.
[58]. Djehiche M, Tomas A, Fittschen C, et al. First direct detection of hono in the reaction of methylnitrite (CH 3 ONO) with OH Radicals. Environ Sci Technol 2011;45:608–614; doi: 10.1021/es103076e.
[59]. Djehiche M, Tomas A, Fittschen C, et al. First cavity ring-down spectroscopy ho 2 measurements in a large photoreactor. Z Für Phys Chem 2011;225:938–992; doi: 10.1524/zpch.2011.0143.
[60]. Sun S-P, Li C-J, Sun J-H, et al. Decolorization of an azo dye orange g in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. J Hazard Mater 2009;161(2–3):1052–1057; doi: 10.1016/j.jhazmat.2008.04.080.
[61]. Fayoumi LMA, Ezzedine MA, Akel HH, et al. Kinetic study of the degradation of crystal violet by K2S2O8. Comparison with Malachite Green: Port Electrochimica Acta 2012;30(2):121–133; doi: 10.4152/pea.201202121.
[62]. Naser Elddine HA, Damaj ZK, Yazbeck OA, et al. Kinetic study of the discoloration of the food colorant E131 by K2S2O8 and KIO3: Port Electrochimica Acta 2015;33(5):275–288; doi: 10.4152/pea.201505275.
[63]. Thabet M, El-Zomrawy AA. Degradation of acid red 17 dye with ammonium persulphate in acidic solution using photoelectrocatalytic methods. Arab J Chem 2016;9:S204–S208; doi: 10.1016/j.arabjc.2011.03.001.
[64]. Ahmadi M, Behin J, Mahnam AR. Kinetics and thermodynamics of peroxydisulfate oxidation of reactive yellow 84. J Saudi Chem Soc 2016;20:644–650; doi: 10.1016/j.jscs.2013.07.004.
[65]. Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrason Sonochem 2016;29:156–162; doi: 10.1016/j.ultsonch.2015.09.008.
[66]. Lei Y, Cheng S, Luo N, et al. Rate constants and mechanisms of the reactions of cl • and cl 2 •– with trace organic contaminants. Environ Sci Technol 2019;53(19):11170–11182; doi: 10.1021/acs.est.9b02462.
[67]. Wicktor F, Donati A, Herrmann H, et al. Laser based spectroscopic and kinetic investigations of reactions of the Cl atom with oxygenated hydrocarbons in aqueous solution. Phys Chem Chem Phys 2003;5(12):2562; doi: 10.1039/b212666d.
[68]. Alegre ML, Geronés M, Rosso JA, et al. Kinetic Study of the reactions of chlorine atoms and cl 2 •- radical anions in aqueous solutions. 1. reaction with benzene. J Phys Chem A 2000;104(14):3117–3125; doi: 10.1021/jp9929768.
[69]. Wang P, Yang S, Shan L, et al. Involvements of chloride ion in decolorization of acid orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. J Environ Sci 2011;23(11):1799–1807; doi: 10.1016/S1001-0742(10)60620-1.
[70]. Potakis N, Frontistis Z, Antonopoulou M, et al. Oxidation of bisphenol A in water by heat-activated persulfate. J Environ Manage 2017;195:125–132; doi: 10.1016/j.jenvman.2016.05.045.
[71]. Lipczynska-Kochany E, Sprah G, Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 1995;30(1):9–20; doi: 10.1016/0045-6535(94)00371-Z.
[72]. Liang C, Wang Z-S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci Total Environ 2006;370:271–277; doi: 10.1016/j.scitotenv.2006.08.028.
[73]. Neta P, Huie RE, Ross AB. Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 1988;17(3):1027–1284; doi: 10.1063/1.555808.
[74]. De Meyer T, Hemelsoet K, Van Speybroeck V, et al. Substituent effects on absorption spectra of pH indicators: An experimental and computational study of sulfonphthaleine dyes. Dyes Pigments 2014;102:241–250; doi: 10.1016/j.dyepig.2013.10.048.
[75]. Yang P, Liu J, Korshin GV, et al. New insights into the role of nitrite in the degradation of tetrabromobisphenol s by sulfate radical oxidation. Environ Sci Technol 2022;56(24):17743–17752; doi: 10.1021/acs.est.2c06821.
[76]. Gao X, Guo Q, Tang G, et al. Effects of inorganic ions on the photocatalytic degradation of carbamazepine. J Water Reuse Desalination 2019;9(3):301–309; doi: 10.2166/wrd.2019.001.
[77]. Xu X-R, Li X-Z. Degradation of azo dye orange g in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol 2010;72:105–111; doi: 10.1016/j.seppur.2010.01.012.
[78]. Gu X, Lu S, Li L, et al. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Ind Eng Chem Res 2011;50(19):11029–11036; doi: 10.1021/ie201059x.
[79]. Siegrist RL, Crimi M, Simpkin TJ, (eds). In situ chemical oxidation for groundwater remediation. SERDP/ESTCP Environmental Remediation Technology. Springer New York: New York, NY; 2011.; doi: 10.1007/978-1-4419-7826-4.
[80]. Ghauch A, Tuqan AM, Kibbi N, et al. Methylene blue discoloration by heated persulfate in aqueous solution. Chem Eng J 2012;213:259–271; doi: 10.1016/j.cej.2012.09.122.
[81]. Li S-X, Wei D, Mak N-K, et al. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. J Hazard Mater 2009;164(1):26–31; doi: 10.1016/j.jhazmat.2008.07.110.
[82]. Lahmar N, Djehiche M, Bachiri M. Removal of E110 from aqueous solution using heat-activated persulfate. Submited Eurasian J Chem 2024.
[83]. Bender JT, Petersen AS, Østergaard FC, et al. Understanding cation effects on the hydrogen evolution reaction. ACS Energy Lett 2023;8(1):657–665; doi: 10.1021/acsenergylett.2c02500.
[84]. Zhou D, Chen L, Li J, et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview. Chem Eng J 2018;346:726–738; doi: 10.1016/j.cej.2018.04.016.
[85]. Xia X, Zhu F, Li J, et al. A review study on sulfate-radical-based advanced oxidation processes for domestic/industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front Chem 2020;8:592056; doi: 10.3389/fchem.2020.592056.
[86]. Park S-M, Lee S-W, Jeon P-Y, et al. Iron anode-mediated activation of persulfate. Water Air Soil Pollut 2016;227:462; doi: 10.1007/s11270-016-3169-4.
[87]. Zrinyi N, Pham AL-T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Res 2017;120:43–51; doi: 10.1016/j.watres.2017.04.066.
[88]. Huang K-C, Zhao Z, Hoag GE, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 2005;61:551–560; doi: 10.1016/j.chemosphere.2005.02.032.
[89]. Yang C. Degradation of bisphenol A using electrochemical assistant Fe(II)-activated peroxydisulfate process. Water Sci Eng 2015;8:139–144; doi: 10.1016/j.wse.2015.04.002.
[90]. Mcheik AH, Jamal MME. Kinetic study of the discoloration of rhodamine b with persulfate, iron activation. J Chem Technol Metall 2013;357–365.
[91]. Yuan S, Liao P, Alshawabkeh AN. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environ Sci Technol 2014;48(1):656–663; doi: 10.1021/es404535q.
[92]. Johnson RL, Tratnyek PG, Johnson RO. Persulfate persistence under thermal activation conditions. Environ Sci Technol 2008;42:9350–9356; doi: 10.1021/es8019462.
[93]. Yu X-Y, Bao Z-C, Barker JR. Free radical reactions involving cl• , cl2-• , and so4-• in the 248 nm photolysis of aqueous solutions containing S2O8 2- and Cl -. J Phys Chem A 2004;108:295–308; doi: 10.1021/jp036211i.
[94]. Hayon E, McGarvey JJ. Flash photolysis in the vacuum ultraviolet region of sulfate, carbonate, and hydroxyl ions in aqueous solutions. J Phys Chem 1967;71(5):1472–1477; doi: 10.1021/j100864a044.
[95]. Huang K-C, Couttenye RA, Hoag GE. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). 2002;413–420.
[96]. Wojnárovits L, Takács E. Rate constants of sulfate radical anion reactions with organic molecules: A review. Chemosphere 2019;220:1014–1032; doi: 10.1016/j.chemosphere.2018.12.156.
[97]. Rehman F, Sayed M, Khan JA, et al. Oxidative removal of brilliant green by UV/S2O82‒, UV/HSO5‒ and UV/H2O2 processes in aqueous media: A comparative study. J Hazard Mater 2018;357:506–514; doi: 10.1016/j.jhazmat.2018.06.012.
[98]. Chen L, Xue Y, Luo T, et al. Electrolysis-assisted UV/sulfite oxidation for water treatment with automatic adjustments of solution pH and dissolved oxygen. Chem Eng J 2021;403:126278; doi: 10.1016/j.cej.2020.126278.
[99]. Sirés I, Guivarch E, Oturan N, et al. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 2008;72(4):592–600; doi: 10.1016/j.chemosphere.2008.03.010.
[100]. Chen C-C, Fan H-J, Jan J-L. Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with zno nanopowder. J Phys Chem C 2008;112:11962–11972; doi: 10.1021/jp801027r.
[101]. Jiang L, Zhang Y, Zhou M, et al. Oxidation of rhodamine b by persulfate activated with porous carbon aerogel through a non-radical mechanism. J Hazard Mater 2018;358:53–61; doi: 10.1016/j.jhazmat.2018.06.048.
[102]. Hammami S, Oturan N, Bellakhal N, et al. Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. J Electroanal Chem 2007;610(1):75–84; doi: 10.1016/j.jelechem.2007.07.004.
[103]. Hori H, Yamamoto A, Hayakawa E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 2005;39(7):2383–2388; doi: 10.1021/es0484754.
[104]. Anipsitakis GP, Dionysiou DD, Gonzalez MA. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions. Environ Sci Technol 2006;40(3):1000–1007; doi: 10.1021/es050634b.
[105]. Gokulakrishnan S, Parakh P, Prakash H. Degradation of malachite green by potassium persulphate, its enhancement by 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane nickel(II) perchlorate complex, and removal of antibacterial activity. J Hazard Mater 2012;213–214:19–27; doi: 10.1016/j.jhazmat.2012.01.031.
[106]. Ayoub ZA, Yazbeck OA, Jamal MME. Kinetic study of acid blue 1 discoloration with persulfate. J Chem Technol Metall 2017;52:812–824.