Published
2024-11-12
Section
Original Research Article
License
Copyright (c) 2024 Ehouman Ahissan Donatien, Toure Hadja Rokia, Oseni Daouda, Sinayoko Souleymane, Konan Gbangbo Rémis, Kouakou Adjoumani Rodrigue, Bamba Amara, Niamien Paulin Marius, Yao Benjamin
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Author(s) warrant that permission to publish the article has not been previously assigned elsewhere.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
OA - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
How to Cite
Study of aluminum corrosion in contact with biogas before and after purification on different carbons
Ehouman Ahissan Donatien
Laboratoire de Thermodynamique et Physico-Chimie du Milieu, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire
Toure Hadja Rokia
Laboratoire de Réaction et Constitution de la Matière, Université Félix Houphouët BOIGNY 22 BP 582 Abidjan 22, Côte d’Ivoire.
Oseni Daouda
Laboratoire de Physique Fondamentale et Appliquée (LPFA), Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire.
Sinayoko Souleymane
Laboratoire de Réaction et Constitution de la Matière, Université Félix Houphouët BOIGNY 22 BP 582 Abidjan 22, Côte d’Ivoire.
Konan Gbangbo Rémis
Ecole Doctorale Polytechnique de Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), BP 1093, Yamoussoukro, Côte d’Ivoire.
Kouakou Adjoumani Rodrigue
Laboratoire de Thermodynamique et Physico-Chimie du Milieu, Université NANGUI ABROGOUA, 02 BP 801 Abidjan 02, Côte d’Ivoire.
Bamba Amara
Laboratoire de Réaction et Constitution de la Matière, Université Félix Houphouët BOIGNY 22 BP 582 Abidjan 22, Côte d’Ivoire.
Niamien Paulin Marius
Laboratoire de Réaction et Constitution de la Matière, Université Félix Houphouët BOIGNY 22 BP 582 Abidjan 22, Côte d’Ivoire.
Yao Benjamin
Centre d’Excellence Africain Pour la Valorisation des Déchets en Produits À Haute Valeur Ajoutée (CEA-VALOPRO), Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), BP 1093, Yamoussoukro, Côte d’Ivoire.
DOI: https://doi.org/10.59429/ace.v7i3.5524
Abstract
The study of aluminium corrosion in contact with biogas before and after purification on different types of carbon aims to understand the impact of impurities present in biogas, in particular hydrogen sulphide (H₂S), on aluminium degradation. The study highlights the importance of biogas purification in minimising aluminium corrosion. Depending on the level of purification and the types of carbon used for filtering, it is possible to improve the durability of infrastructures in contact with biogas. This has direct implications for the maintenance and operating costs of facilities using biogas as an energy source. Hydrogen sulfide (H₂S) is a colorless, flammable and highly toxic gas characterized by an unpleasant odor. It is often present in industrial and natural environments, particularly in biogas. This gas is involved in the degradation of metals used in anaerobic digestion equipment, in the petrochemical industry, etc. The aim of this work is to study the performance of biochar and activated carbon prepared from corn cobs in removing H2S from biogas, and to evaluate the reduction of the corrosive effect of filtered biogas on metallic aluminum. The impregnation and carbonization method was used to prepare activated carbon from corn cobs, and the gravimetric method to study the corrosion rate of metal in biogas. The results indicate that the activated carbon prepared is microporous, has a good specific surface and a better adsorption capacity. Furthermore, the prepared activated carbon samples also showed good H2S removal efficiency in the biogas. The aluminum-induced protective power values in filtered biogas for biochar and activated carbon are 58 % and 82.22 % respectively. We plan to increase the contact time and experiment with other metals and carbons.
References
[1]. SHER, Farooq, SMJEČANIN, Narcisa, HRNJIĆ, Harun, et al (2024). Technologies émergentes pour la production de biogaz: un examen critique des progrès récents, des défis et des perspectives. Sécurité des procédés et protection de l'environnement.
[2]. BOURGOIN, P. et ASFAR, P. (2012), Intoxication aiguë à l’hydrogène sulfuré. Médecine Intensive Réanimation, vol. 21, no 5, p. 541-546.
[3]. GBANGBO, K., R., KOUAKOU, A.,R., EHOUMAN, A., D., et al.( 2023), Influence of water content on hydrogen sulfide adsorption in biogas purification with Musa paradisiaca biochar. Chemistry Africa, vol. 6, no 2, p. 657-665.
[4]. EHOUMAN, A. D., KOUAKOU, A. R., COUBALY, M., et al. (2023), Reduction of the corrosive character of a biogas: elimination of hydrogen sulfide by filtration on activated carbon based on palm kernel shell. J. Mater. Environ. Sci., 14 (9), 1078, vol. 1095.
[5]. El Houari, Abdelaziz. (2018); Production et élimination des sulfures produits lors de la biométhanisation de boues de station de traitement des eaux usées domestiques : Procédés biologiques de sulfooxydation par des thiobacilles anaérobies facultatifs (projet SULFOX); Thèse de doctorat,Université Cady Ayyad; Maroc; 237 pages.
[6]. Nyamukamba, P., Mukumba, P., Chikukwa, Evernice,S., et al. (2022), Hydrogen Sulphide removal from biogas: A review of the upgrading techniques and mechanisms involved; International Journal of Renewable Energy Research (IJRER), vol. 12, no 1, p. 557-568.
[7]. Kougias, Panagiotis G. et Angelidaki, Irini, (201)8, Biogas and its opportunities—A review; Frontiers of Environmental Science & Engineering, vol. 12, p. 1-12.
[8]. Abdirakhimov, Mirzokhid, Al-Rashed, Mohsen H., et Wójcik, Janusz. (2022), Recent Attempts on the Removal of H2S from Various Gas Mixtures Using Zeolites and Waste-Based Adsorbents; Energies, vol. 15, no 15, p. 5391.
[9]. Kaiser, F., Diepolder, M., Eder, J., Hartmann, S., Prestele, H., Gerlach, R., (2004) , Gronauer, A. Biogas erträge verschiedener nachwachsender Rohstoffe ;Landtechnik, vol 59 no4, p 224-225.
[10]. Saupe, R., Seider, T., Stock, V., Kujawski, O., & Otto, T. Optimisation de la production de biogaz à l’aide de MEMS basé sur un capteur en ligne Proche. infrarouge; In Proc. of SPIE,Vol. 8616, p. 86160.
[11]. ABUBAKAR, Abdulhalim Moussa( 2023). ÉTUDE CINÉTIQUE DE LA PRODUCTION DE BIOGAZ À PARTIR DE FUMIER DE POULET. Thèses de doctorat. DÉPARTEMENT DE GÉNIE CHIMIQUE.
[12]. KARIMI, Mohsen, SHIRZAD, Mohammad, SILVA, José AC, et al (2023). Séparation et capture du dioxyde de carbone par adsorption : une revue. Environmental Chemistry Letters, vol. 21, no 4, p. 2041-2084.
[13]. Benhamed, Imane.(2015); Amélioration par ajout d’un métal de transition de la régénération in situ d’un charbon actif par oxydation catalytique,Thèse de doctorat.
[14]. Benhamed, I., Barthe, L., Kessas, R., Julcour, C., & Delmas, H. Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation; Applied Catalysis B: Environmental, 2016, vol. 187, p. 228-237.
[15]. Ehouman A., D., et al., (November 2022 to January 2023); Removal of Hydrogen Sulphide from Biogas by Activated Carbon Based on Borassus Aethiopum (Ivory Coast); An International Peer Review E-3 Journal of Sciences, JCBPS; Section D;,Vol. 13, No. 1, p. 041-050.
[16]. Sun, W., Pugh, D. V., Smith, S. N., Ling, S., Pacheco, J. L., & Franco, R. J. (2010); A Parametric Study Of Sour Corrosion Of Carbon Steela; In NACE CORROSION, p. 10278
[17]. Sawalha, H., Maghalseh, M., Qutaina, J., Junaidi, K., & Rene, E. R. (2020); Removal of hydrogen sulfide from biogas using activated carbon synthesized from different locally available biomass wastes-a case study from Palestine; Bioengineered,vol. 11, no 1, p. 607-618.
[18]. Demey, H., Vincent, T., et Guibal, E. A (2018), novel algal-based sorbent for heavy metal removal; Chemical Engineering Journal, vol. 332,p. 582-595.
[19]. SARRA, BELKACEM, DOUNIA, TENNACHE, et al. (2023), Utilisation des déchets agricoles pour la production de α amylase: Synthèse bibliographique. Thèse de doctorat.
[20]. SUPEK, Edyta, DOBRZYNIEWSKI, Dominik, MAKOŚ-CHEŁSTOWSKA, Patrycja, et al.(2025), Surveillance du processus de purification du biogaz modèle par absorption à l'aide de matrices de capteurs et de chromatographie en phase gazeuse. Mesure, vol. 239, p. 115436.
[21]. KARIMI, Mohsen, FERREIRA, Alexandre, RODRIGUES, Alírio E., et al. (2023), MIL-160 (Al) comme candidat pour la valorisation du biogaz et la capture du CO2 par des procédés d'adsorption. Industrial & Engineering Chemistry Research, vol. 62, no 12, p. 5216-5229.
[22]. KARIMI, Mohsen, SIQUEIRA, Rafael M., RODRIGUES, Alírio E., et al., (2024). Valorisation du biogaz à l'aide de MOF MIL-160 (Al) façonné par procédé d'adsorption par variation de pression: évaluation de la modélisation expérimentale et dynamique. Separation and Purification Technology, vol. 344, p. 127-260.
[23]. Rodrigue, Kouakou. A., Donatien, Ehouman. A., Sylvie, Konan. A. T., Joachim, K. N., Ouattara, K. D., Eric, A. K., & Tchirioua, E.(2022) ;Removal of Hydrogen Sulfide from Biogas by the Acacia Auriculeaformis Activated Carbon; Science, vol. 10, No 5, p. 170-176.
[24]. Usher, KM., Kaksonen, AH., Cole, I., Marney, D. (2014); Microbially influenced corrosion of buried carbon steel pipes; Critical review: International Biodeterioration and Biodegradation, vol 93, p. 84-106.
[25]. EHOUMAN, A. D., KOUAKOU, A. R., COUBALY, M., et al. (2023); Reduction of the corrosive character of a biogas: elimination of hydrogen sulfide by filtration on activated carbon based on palm kernel shell. J. Mater. Environ. Sci., 14 (9), 1078, vol. 1095.
[26]. ROCHAIX, Colombe. Electrochimie: thermodynamique, cinétique. Nathan., 1996.
[27]. Eliades, Theodore et Athanasiou, Athanasios E. In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility; The Angle Orthodontist, 2002, vol. 72, no 3, p. 222-237.
[28]. Fontana, Mars Guy et Greene, Norbert D.(1967) Corrosion Engineering.
[29]. Redon, Nicolas. (2012); Résistance à la corrosion des fils Copper Ni-Ti 35 et des fils en acier inoxydable multibrins D-Rect en milieu acide. Thèse de doctorat. Université de Lorraine; France ;89 pages.
[30]. Ehouman, A., D., Konan, G., R., Bamba, A., Kouakou, A., R., Taniky, S., H., Tindo, S., Niamien, P., M., Yao, B., (October 2023); Evaluation of the Corrosion of Aluminum in Contact with a Biogas before and after Purification on Activated Carbon Based on Branche of Borassus aethiopum; International journal of science & Research Methodology (IJSRM); Vol. 25 (4): 15-27.