Applied Chemical Engineering

       ISSN: 

2578-2010 (Online)

Journal Abbreviation:

Appl. Chem. Eng.

Applied Chemical Engineering (ACE) is an international open-access academic journal dedicated to publishing highly professional research in all fields related to chemical engineering. All manuscripts are subjected to a rigorous double-blind peer review process, to ensure quality and originality. We are interested inthe original research discoveries. This journal also features a wide range of research in ancillary areas relevant to chemistry. ACE publishes original research articles, review articles, editorials, case reports, letters, brief commentaries, perspectives, methods, etc. The research topics of ACE include but are not limited to:

  • 1. Analytical Chemistry
  • 2. Chemical Engineering
  • 3. Materials chemistry
  • 4. Material synthesis
  • 5. Catalysis
  • 6. Process chemistry and technology
  • 7. Quantum chemistry method
  • 8. Environmental chemical engineering
  • 9. Bio-energy, resources, pollution
  • 10.Reaction kinetics
  • 11. Nanotechnology and bioreactors
  • 12. Surface, coating and film
 

Starting from Volume 7, Issue 2 of 2024, Applied Chemical Engineering (ACE) will be published by Arts and Science Press Pte. Ltd. Please turn to the journal website for new submissions. 

Vol. 7 No. 4 (2024): Vol. 7 No. 4(Publishing)

Table of Contents

Open Access
Original Research Article
by S. Raja, Rusho Maher Ali, K. Ch. Sekhar, Humam Muthana Jummaah, Rana Hussain, Ban Safir Khalaf Al- shammari, Zainab Nizar Jawad, Mohammed Ahmed Mustafa, Avvaru Praveen Kumar
2024,7(4);    153 Views
Abstract The demand for the development of sustainable manufacturing processes is enhanced by the necessity to optimize polymer composites, particularly in the context of fused deposition modeling (FDM). This research aims to enhance sustainable polymer composites to improve the surface metamorphosis during FDM processes. Various eco-friendly polymer matrices were integrated with novel composite reinforcements to evaluate their impact on surface quality, structural integrity, and the performance of FDM-printed components. Key surface features, including roughness (Ra), texture, and function, were quantified through both experimental and computational methods. The optimized composites led to a significant reduction in surface roughness, with Ra values improving by up to 45% compared to standard filaments. In addition, tensile strength was increased by 30% and flexural strength by 20% relative to unmodified polymer composites. Optimization strategies, guided by green chemistry principles and materials science, successfully enhanced surface finishes and functional properties, aligning with sustainability goals. The results demonstrate that optimized sustainable polymer composites can significantly improve the quality and performance of FDM prints, supporting more efficient and environmentally friendly manufacturing practices. This study contributes to advancing materials and processes in line with sustainability principles and surface engineering.
show more
Open Access
Original Research Article
by S. Raja, Maher Ali Rusho, T V S P V Satya Guru, Rasha Eldalawy, Adnan Flaih Hassen, Raid D. Hashim, Zainab Nizar Jawad, Mohammed Ahmed Mustafa, Avvaru Praveen Kumar
2024,7(4);    174 Views
Abstract This research brings in the advancement of sustainable, high-performance engineering solutions where catalytic surface coatings are pursued to integrate with fused deposition modeling printed sustainable materials. The work is centered on optimization of catalytic coatings for higher efficiency and durability, which is innovatively linked with the advance chemical engineering. In probing the influence of different catalytic materials and deposition methods on FDM-printed substrates, we applied advanced surface functionalization, nano-engineering, and computational modeling techniques. Among other elements, this research approach utilized ANN with PSO algorithms in optimizing the parametric setting that best yielded high catalytic performance. The results obtained show considerable improvements in catalytic activity and the coating's lifetime, promising such applications in energy, environmental, and chemical industries. This study not only draws attention to the potential of FDM-printed sustainable materials but also demonstrates the potential of chemical engineering innovations for optimizing catalytic surface coatings toward the development of high-performance, sustainable technologies.
show more

Announcements

This journal will be jointly published by Enpress Publisher and Arts and Science Press (https://ojs.as-pub.com/index.php/index/index).

This journal will be jointly published by Enpress Publisher and Arts and Science Press (https://ojs.as-pub.com/index.php/index/index).
Posted: 2024-01-25
 

ACE is included in CAS databases!

Posted: 2023-12-11
 

Publication frequency becomes quarterly

Posted: 2023-09-12
 
More Announcements...